
Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–6:00, 10:00–12:00) 2

2 Problem Set 5 (6:00–10:00) 2

3 Valgrind (12:00–19:00) 3

4 Stacks and Queues (19:00–21:00) 5

5 Linked Lists (21:00–70:00) 5
5.1 structs2.c . 7
5.2 Operations . 9

5.2.1 Insertion . 9
5.2.2 Deletion . 10

5.3 list1.c . 10

1

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–6:00, 10:00–12:00)

• For an example of poor user interface design, you needn’t go any farther
than the Harvard Square T station. The machines there require an inor-
dinate number of steps just to purchase a ticket for the subway. David
experienced this secondhand when he tried to help a foreigner get to Park
Street. No doubt at some point in your life you too have fallen victim
to poor user interface design so, by all means, don’t write it off as unim-
portant as you plan your final project and other applications! Sometime
in the next few weeks, we’ll ask you to think of a piece of hardware or
software that has been particularly frustrating to you and how you might
improve it. If it’s related to Harvard, we’ll do our best to escalate it so
that it might be fixed someday.

• As we all mourn the loss of Steve Jobs, we are reminded of his amazing
ability to make technology simpler and more elegant. We also recently lost
Dennis Ritchie, the father of the C language and one of the contributors
to the Unix operating system. May they rest in peace.

• Don’t forget that Office Hours tonight and this week will be held at the
iLab rather than the dining halls. Pizza and soda will be served and David
will make himself available to answer questions about Quiz 0.

• If you’ve made it this far in the course, don’t give up now! Come talk to
us before you decide to withdraw!

2 Problem Set 5 (6:00–10:00)

• Problem Set 5 will introduce you to the basics of storing images as bytes.
If we think back to Week 0, we can think of a quick and easy way to store
a black-and-white image. Images are composed of a series of dots, known
as pixels, each of which has a color. If the image we want to store is black
and white, then we can use 1 to represent white and 0 to represent black.
Each pixel is thus stored as 1 bit. Fittingly, this type of image is called
a bitmap. Although images these days are much more complex than this,
this basic concept holds true: the color of a single pixel can be represented
with some number of bits.

• In addition to the bits representing the colors of pixels, images need to
store metadata in order that programs like Photoshop know how to inter-
pret them. Not all of this metadata is particularly interesting, but we’ll
explore some of it pertaining to bitmaps, e.g. biSize in this upcoming
problem set.

• Incidentally, BYTE and WORD are Windows-specific data types that have
corresponding mappings in Linux which we’ll provide for you.

2

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

• After this week, there will be no more Hacker Editions. This week, the
Hacker Edition will challenge you not only to enlarge an image, but also
to shrink an image. Whereas enlarging an image only requires duplicating
information that is already there, shrinking an image requires throwing
information away. How will you decide which pixels to keep?

3 Valgrind (12:00–19:00)

• Valgrind is a tool which analyzes your code for memory mismanagement.
It will help detect memory leaks, buffer overruns, pointer abuse, and more.
It’s not perfect, of course, since it can’t, for example, simulate all possible
user input, but it’s a good starting point.

• Let’s take a look at an example program, memory.c, which will show us
how Valgrind might prove useful:

/**

* memory.c

*

* Computer Science 50

* David J. Malan

*

* Demonstrates memory-related errors.

*

* problem 1: heap block overrun

* problem 2: memory leak -- x not freed

*

* Adapted from

* http://valgrind.org/docs/manual/quick-start.html#quick-start.prepare.

***/

#include <stdlib.h>

void

f(void)

{

int *x = malloc(10 * sizeof(int));

x[10] = 0;

}

int

main(void)

{

f();

3

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

return 0;

}

Notice that we are allocating 40 bytes for an array of int and then improp-
erly storing an integer at index 10, which overwrites the null terminator.
Off-by-one errors like these won’t always be immediately obvious since
your program may not segfault or even complain. However, Valgrind will
reveal both of this bugs to us:

valgrind ./memory

==2257== Invalid write of size 4

==2257== at 0x804840F: f (memory.c:23)

==2257== by 0x8048421: main (memory.c:30)

==2257== Address 0x4275050 is 0 bytes after a block of size 40 alloc’d

==2257== at 0x4025D69: malloc (vg_replace_malloc.c:236)

==2257== by 0x8048405: f (memory.c:22)

==2257== by 0x8048421: main (memory.c:30)

==2257== LEAK SUMMARY:

==2257== definitely lost: 40 bytes in 1 blocks

==2257== indirectly lost: 0 bytes in 0 blocks

==2257== possibly lost: 0 bytes in 0 blocks

==2257== still reachable: 0 bytes in 0 blocks

==2257== suppressed: 0 bytes in 0 blocks

==2257== Rerun with --leak-check=full to see details of leaked memory

Valgrind gives us a large amount of output when we run it, but the part
that we care about is excerpted above. This excerpt tells us that at line 23,
we wrote 4 bytes (i.e. an int) improperly. This accords with our previous
analysis of memory.c which indicated that we were touching memory past
the bounds of the array x.

• The excerpt above also tells us that 40 bytes of memory are “definitely
lost.” This alludes to a memory leak. Valgrind recommends that we run
with the option --leak-check=full and when we do, we get this extra
chunk of output:

==2257== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==2257== at 0x4025D69: malloc (vg_replace_malloc.c:236)

==2257== by 0x8048405: f (memory.c:22)

==2257== by 0x8048421: main (memory.c:30)

This tells us that the error occurred within malloc, but we know that’s
probably not exactly true. If we go up one more frame on this stack trace,
we see that Valgrind points to f as the culprit. When we examine f, we
see that it has a memory leak because it calls malloc, but not free.

4

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

4 Stacks and Queues (19:00–21:00)

• So far, we’ve only talked about stacks in the context of a program’s mem-
ory, but they are, in fact, a generic data structure that is useful in other
contexts. When adding elements to a stack, we add to the top. Thus, if
we want to retrieve the most recently added element, we need only pop
off the top. We call this LIFO, of last-in-first-out, storage.

• Imagine if the line at the Apple Store were implemented as a stack. You
wouldn’t be too happy when the person at the end of the line was served
first. More appropriate for the Apple Store line is a data structure called a
queue, which implements FIFO, or first-in-first-out, storage. This simply
means that the first element added to the queue is the first to be removed,
just as you would expect the first person in line at the Apple Store to be
served first.

• We’ll see soon that both stacks and queues have many different uses.
Stacks are used, for example, in validating HTML.

5 Linked Lists (21:00–70:00)

• When we faced the problem of storing many similar variables, we discov-
ered the convenience of an array. Not only does an array prevent us from
having to declare variable after variable of the same type, it allows us
random access to its elements using bracket notation. That is, we can
immediately find an element in the array if we know its index.

• However, one thing that arrays are not good for is insertion. We saw this
during our sorting demos when we wanted to move an element from the
beginning to the middle. In order to do so, we had to swap it with another
element in order to avoid having to shift all the in-between elements down
by one.

• GetString highlights another shortcoming of arrays: they are of finite
size. You have to know in advance how big they need to be. If you guess
wrong, you must go through the expensive operation of allocating more
memory and copying the old memory into the new. Generally, anytime
you need to contact the operating system, as you do when you request
more memory, you incur a performance penalty.

• Enter linked lists. Each of the elements in a linked list consists of both a
value and a pointer to the next element in the list. We refer to the ele-
ments of a linked list as nodes. This data structure is compelling because
insertion is very fast. Instead of a large chunk of contiguous memory, we
now have scattered small chunks of memory that are stitched together by
pointers.

5

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

• We can visualize a linked list like so:

This particular linked list is equivalent to an array of size 5. However,
unlike an array of size 5, this linked list can grow to size 6 without having
to copy over all of its elements to a new chunk of memory. As usual, the
arrows in this diagram represent pointers.

• In order to define a linked list node, we’ll turn to the syntax for structs
we used in sudoku.c and structs1.c:

typedef struct node

{

int n;

struct node *next;

}

node;

In accordance with the diagram, n is the actual integer value stored by
a node and next is a pointer to the next node in the list. Because we
started this declaration with typedef and ended it with node, we can
refer to everything in between (struct node {...}) as a node from now
on. Note that next must be declared as a struct node * rather than a
node * because node hasn’t been fully defined.

• Incidentally, we previously defined a student as follows:

typedef struct

{

int id;

char *name;

char *house;

}

student;

Note that the first line doesn’t need to be typedef struct student be-
cause we never refer to the entire struct between the curly braces. To
access the variables within a struct, we use dot notation, e.g. s.id where
s is of type student.

6

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

5.1 structs2.c

• structs2.c builds on structs1.c by storing information in a file:

/**

* structs.c

*

* Computer Science 50

* David J. Malan

*

* Demonstrates use of structs.

***/

#include <cs50.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "structs.h"

// class size

#define STUDENTS 3

int

main(void)

{

// declare class

student class[STUDENTS];

// populate class with user’s input

for (int i = 0; i < STUDENTS; i++)

{

printf("Student’s ID: ");

class[i].id = GetInt();

printf("Student’s name: ");

class[i].name = GetString();

printf("Student’s house: ");

class[i].house = GetString();

printf("\n");

}

// now print anyone in Mather

7

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)

printf("%s is in Mather!\n\n", class[i].name);

// let’s save these students to disk

FILE *fp = fopen("database", "w");

if (fp != NULL)

{

for (int i = 0; i < STUDENTS; i++)

{

fprintf(fp, "%d\n", class[i].id);

fprintf(fp, "%s\n", class[i].name);

fprintf(fp, "%s\n", class[i].house);

}

fclose(fp);

}

// free memory

for (int i = 0; i < STUDENTS; i++)

{

free(class[i].name);

free(class[i].house);

}

}

Here, we’ve made the arbitrary decision to store each piece of information
about a student on a separate line in our file. fopen seems to open a file
for us, in this case, one named “database” in mode w,1 meaning “write.”
fopen returns to us a file pointer and, as always, we need to check that
it’s not NULL, as it might be if the operating system were out of memory
or if you tried to open a file in a directory for which you didn’t have the
proper permissions.

• The FILE type is actually implemented as a struct. You can imagine it to
be like a cassette tape in that you have to manually rewind if you want to
return to the first line after you’ve read some number of lines. fseek and
rewind are the functions that allow you to control where in a file you are
located.

• To write to a file, we use fprintf, which operates much like printf: we
pass it a file pointer, a string containing one or more formatting characters,
and a sequence of variables to fill those formatting characters.

• Note we are careful to close our file and free the memory used to store the
names and houses of students. Why don’t we call free on id, though?

1FYI, if you’ve seen this written elsewhere as wb, know that w is functionally equivalent on
the Appliance and many other systems.

8

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

We didn’t allocate memory for it using malloc.2

• When we compile and run structs2.c and enter information correspond-
ing to three students, we see that a file named database is, in fact, created
in our present working directory.

5.2 Operations

5.2.1 Insertion

• In order to visualize a linked list, we’ll ask 5 volunteers to come on stage
and hold pieces of paper with numbers on them. In addition to holding the
pieces of paper, the volunteers will point with their left hand to another
volunteer to signify the next pointer pointing to another node in the list.
The last volunteer will point to no one (i.e. NULL) since she is at the end
of the list. The values in the list will be in sorted order from minimum to
maximum.

• In order to store a linked list, we need only store a single pointer to the
first node of the list; let’s call it first. From first, we can find all the
other nodes in the list simply by following their next pointers. Each of the
nodes in the list requires 8 bytes to be stored, 4 for the integer value and
4 for the pointer, but first only requires 4 bytes since it’s just a pointer.

• To begin the process of inserting a value into the linked list, we malloc

enough memory to hold a new node and place in it the value of interest.
We’ll call the pointer to this memory (as returned by malloc) newptr.

• Next, we traverse the list, checking each value to see if it is larger than the
value we want to insert. If we reach the end of the list and find that no
values are larger than the value we wish to insert, then we assign newptr

to the current last node’s next pointer (thereby pointing it to the chunk
of memory we just malloc’ed) and we assign NULL to the next pointer of
our newly inserted last node.

• If we need to insert a node at the beginning of the list, we take only two
steps (yay, constant time!)3 First, we assign first to the next pointer of
our newly allocated node. Second, we point first to our newly inserted
node. The order of these steps is important. If we first pointed first to
our newly allocated node, we would lose track of our entire linked list!

• Insertion into the middle of a linked list is the most complicated case.
Again, we traverse the list until we find the right position for our new
node. We’ll see in this case that we need two pointers when we traverse
the list, the first to point to the current node (ptr) and the second to

2Technically, we called malloc in GetInt because it calls GetString, but we also called
free immediately afterward.

3That is, after traversing the entire list to determine that the number belongs at the
beginning.

9

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

point to the previous or predecessor node (predptr). When the current
node’s value is larger than the value of the new node we’re inserting, we
know that the new node belongs after predptr. In order, we point the
new node’s next pointer to ptr and predptr’s node’s next pointer to the
new node. Whew.

5.2.2 Deletion

• To delete a node at the end of the list, we point ptr to the last node in the
list and update the next pointer of predptr to point to NULL. We then
call free on ptr.

• To delete a node at the beginning of the list, we begin by pointing predptr

and ptr at the first and second nodes in the list, respectively. We then
call free on predptr and update first to point to ptr.

• In all these cases, the order in which we free nodes and update pointers
is extremely important so that we don’t orphan single nodes or entire
segments of the list.

5.3 list1.c

• Linked lists will become important to you as you tackle Problem Set 6,
which challenges you to implement the fastest spellchecker possible. Al-
though you theoretically could load up your dictionary of correctly spelled
words into one giant array, the running time of your spellchecker will then
be O(n) because, in the worst case, the word you’re checking isn’t in the
dictionary at all and you have to iterate through every single element to
confirm this. We’ve seen O(log n) in the context of binary search, but the
holy grail of big O notation is actually O(1), or constant time. The fastest
solutions to Problem Set 6 will approach O(1) in their running times!

• Let’s see how we might implement linked list operations in actual C code.
The various operations which are associated with linked lists are displayed
on the start-up menu of list1.c:

MENU

1 - delete

2 - find

3 - insert

4 - traverse

0 - quit

At the top of our program, we include some files we’ll wave our hands at,
but then we have the declaration of a global variable:

10

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

// linked list

node *first = NULL;

Although global variables are generally bad design, they are occasionally
okay to use, particularly if the entire program needs to reference that
variable throughout its code. Following best practices, we initialize our
pointer to NULL.

• Incidentally, if you want to break a string across multiple lines, simply add
a closing quotation mark at the end of the line and an opening quotation
mark at the beginning of the next line with nothing in between:

// print instructions

printf("\nMENU\n\n"

"1 - delete\n"

"2 - find\n"

"3 - insert\n"

"4 - traverse\n"

"0 - quit\n\n");

• As in our other programs, we use a do-while loop to prompt the user for
valid input.

• At the end of main, we are careful to free the linked list that we’ve imple-
mented:

// free list before quitting

node *ptr = first;

while (ptr != NULL)

{

node *predptr = ptr;

ptr = ptr->next;

free(predptr);

}

Initializing ptr to first tells it to point to the first node of the linked list,
just as first does. Our while loop continues as long as ptr isn’t NULL,
i.e., as long as it hasn’t traversed to the end of the list. Within the loop,
we first tell predptr to point to the same thing as ptr. Second, using
arrow notation, we tell ptr to move one node down the list. Finally, we
free the memory that predptr is pointing to.

• Let’s assume that the user chose 3 from the start menu:

/*

* Tries to insert a number into list.

*/

11

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

void

insert(void)

{

// try to instantiate node for number

node *newptr = malloc(sizeof(node));

if (newptr == NULL)

return;

// initialize node

printf("Number to insert: ");

newptr->n = GetInt();

newptr->next = NULL;

// check for empty list

if (first == NULL)

first = newptr;

// else check if number belongs at list’s head

else if (newptr->n < first->n)

{

newptr->next = first;

first = newptr;

}

// else try to insert number in middle or tail

else

{

node *predptr = first;

while (true)

{

// avoid duplicates

if (predptr->n == newptr->n)

{

free(newptr);

break;

}

// check for insertion at tail

else if (predptr->next == NULL)

{

predptr->next = newptr;

break;

}

// check for insertion in middle

12

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

else if (predptr->next->n > newptr->n)

{

newptr->next = predptr->next;

predptr->next = newptr;

break;

}

// update pointer

predptr = predptr->next;

}

}

// traverse list

traverse();

}

First we allocate memory for the new node and then check that it isn’t
NULL. In the next few steps, we follow those which we walked through a
few moments ago. We take in the user input and assign it to the new node

in addition to pointing its next pointer to NULL. We do so using the arrow
notation that we mentioned briefly:

// initialize node

printf("Number to insert: ");

newptr->n = GetInt();

newptr->next = NULL;

To be clear, we can’t use dot notation to access n because newptr isn’t
a struct but rather a pointer-to-struct. To access the struct it points to,
we must first dereference it. In fact, the arrow notation is doing this
for us. newptr->n is equivalent to (*newptr).n. The arrow is really
just syntactic sugar which dereferences a pointer-to-struct and accesses
an element within.

• The easiest case for insertion is an empty list. If the list is empty, the
node we’re inserting becomes the entire list.

• Next, we check if the new node belongs at the head of the list, i.e. if its
value is less than the value of the first node:

// else check if number belongs at list’s head

else if (newptr->n < first->n)

{

newptr->next = first;

first = newptr;

}

13

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Monday: October 17, 2011
Andrew Sellergren

first is a pointer to a node, so we must use the arrow notation to access
the value it stores in n and compare it to the value of the node we’re
inserting. If first’s value is greater than the value to be inserted, we
first point the next pointer of newptr at first and then point first to
newptr. If we reversed the order of these two steps, we would orphan the
entire list.

• The remainder of the code in insert handles the more complicated cases
of inserting in the middle and at the tail of the list, but we’ll save that for
next time!

14

	Announcements and Demos (0:00–6:00, 10:00–12:00)
	Problem Set 5 (6:00–10:00)
	Valgrind (12:00–19:00)
	Stacks and Queues (19:00–21:00)
	Linked Lists (21:00–70:00)
	structs2.c
	Operations
	Insertion
	Deletion

	list1.c

