
Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–2:00) 2

2 Looking Forward (2:00–5:00) 2

3 From Last Time (5:00–18:00) 2

4 Hash Tables (18:00–44:00) 3
4.1 Separate Chaining . 5

5 Trees and Tries (44:00–59:00) 6

6 Compression (59:00–72:00) 9
6.1 Morse Code . 9
6.2 Huffman Coding . 10

7 Teaser (72:00–75:00) 12

1

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–2:00)

• Music today provided by CS50’s own Ansel Duff!

• The CS50 Store is now open for business! If financial concerns are holding
you back from purchasing, please reach out to us and we’ll make sure
you’re taken care of.

• CS50 Lunch happens again this Friday! RSVP here.

2 Looking Forward (2:00–5:00)

• Thus far, we’ve worked almost exclusively with C, a very low-level pro-
gramming language. In the weeks to come, we’ll dive in to HTML and
CSS, which aren’t programming languages, per se, but rather mark-up
languages. If we go to HarvardFML and right click to View Source, we
can actually see all of the HTML and CSS that makes up this page. Lan-
guages like PHP and SQL will enable us to make these websites dynamic.

• Whereas we’ve had to work very hard to implement data structures like
linked lists (and soon tries, trees, and hash tables) in C, we won’t have to
do much at all, if anything, to implement these data structures in more
high-level programming languages like PHP: some of these data structures
are built-in and, in general, the syntax is much less complicated.

3 From Last Time (5:00–18:00)

• We looked at stacks, which exhibit LIFO (last-in-first-out) storage. Imag-
ine a stack of trays in Mather dining hall. The last tray added to the stack
is on top and is the first to be taken. Stacks have the powerful advantage
of allowing insertion and deletion in constant time.

• To implement a stack, we could consider using an array. As always, arrays
come with the inconvenience of fixed size, but for this exercise, we can
accept that. We can enclose this array within a struct in order to store
other information relevant to the stack:

typedef struct

{

int numbers[CAPACITY];

int size;

}

stack;

size represents the actual size of our stack—that is, the number of ele-
ments the stack currently contains—not to be confused with CAPACITY,
which is the maximum number of elements the stack can contain.

2

http://store.cs50.net
http://cs50.net/rsvp
http://www.harvardfml.com

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

• As part of our design, we’ll need to decide if we’re okay with our stack
having a finite size or if we’ll need to implement a way for it to grow past
CAPACITY using malloc to allocate more memory. The advantage of using
an array here rather than a linked list is that arrays are built-in whereas
linked lists require a lot of additional coding. This type of compromise is
one you will find yourself making often in the world of programming: is
it really worth it to write 400 lines of code just to slightly improve your
program’s design? One of the challenges of the Final Project will be to
rein in your ambitions and to be realistic about what you can accomplish
in a few weeks’ time. The unfortunate truth is that many problems arise
during the process that you couldn’t possibly have anticipated.

• Implementing a queue, which demonstrates FIFO (first-in-first-out) stor-
age, would be very similar to implementing a stack:

typedef struct

{

int head;

int numbers[CAPACITY];

int size;

}

queue;

The only difference between our implementations of queue and stack is
this extra variable head within queue. When elements are plucked off
a queue, the location of the head changes, so we need to keep track of
this. This prevents us from having to shift all of the elements of the
array to the left every time the first element is plucked off. In this case,
we make a compromise of using an additional 4 bytes of space to avoid
an expensive O(n) operation. The tradeoff between time and space is
a common theme in computer science. Recall that merge sort was the
fastest sorting algorithm we looked at, but it was also the most expensive
in terms of space because it required an additional array in which to place
the sorted elements.

• For real-world applications, having a queue of finite size is fairly reason-
able. Consider our Apple Store example, where a queue for new iPhones
should be limited to 500 if there are only 500 iPhones in stock.

4 Hash Tables (18:00–44:00)

• In an ideal world, we would be able to insert and access/remove elements
in a data structure in constant time. The data structure that allows us to
do this is called a hash table.

• Let’s assume we want a data structure that can store people’s names, e.g.
Alice and Bob. We’ll begin with an array to store these names and we

3

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

could, of course, insert names randomly into this array. However, the
downside of this is that we don’t know where to find any of these names
after we’ve inserted them, so we have to search the entire array to find a
particular name. Once again, we’re back at O(n) running time for search.

• A better solution would be to begin with an array of size 26 with one
element for each letter of the alphabet. Then, we can place names in the
array according to their first letter, e.g. Charlie in index 2. Now when we
go to search for the name Charlie in our array, we can jump immediately
to index 2. Woohoo, constant-time lookup!

• But, there’s a problem.1 What if there is more than one name that begins
with a particular letter? We could consider using a two-dimensional array
so that each element in the original array is another array. However, in
doing so, we’d be blowing up our space requirements, which might not
entirely be necessary given that the letters X, Y, and Z, for example, are
unlikely to have more than one name.

• Given that X, Y, and Z are unlikely to have more than one name associated
with them, perhaps we could use their indexes in the array to store the
duplicate names that start with more common letters like C. First, we’ll
try to insert Charlie into index 2, but if there’s already a name there,
we’ll probe the array for the next empty element and place Charlie there.
This makes more efficient use of our space, but ultimately, it leads to O(n)
lookup times: if Alice happens to be inserted at index n−1 because all the
other elements are full, then we’ll begin by looking at index 0 and iterate
all the way to n− 1 before finding her.

• Maybe we’re making too big a deal of this idea of names that start with
the same letter. What is the likelihood of it anyway? To answer this
question, we’ll look at a related question:

In a room of n CS50 students, what’s the probability that at
least 2 have the same birthday?

This question is easiest to answer by considering the opposite: what’s
the probability that we all have different birthdays? This probability can
represented as follows:

p̄(n) = 1 ×
(
1 − 1

365

)
×

(
1 − 2

365

)
× · · · ×

(
1 − n−1

365

)
The probability that no 2 students have the same birthday is 1 when n is
1. The probability that no 2 students have the same birthday is 1 × 364

365
when n is 2 because there are 364 possibilities for the second person’s
birthday that don’t collide with the first person’s. The probability that
no 3 students have the same birthday is 1 × 364

365 × 363
365 . And so on. This

series actually reaches high percentages fairly quickly. For example, when
n is 40, the probability of a collision is almost 90%.

1Sigh, isn’t there always?

4

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

• This same probability distribution can roughly be applied to the question
of how likely it is that two names will begin with the same letter. Be-
cause the probability of collision quickly increases as the number of names
increases, this isn’t a problem that we can sweep under the rug when
designing our data structure.

• The act of walking through our hash table looking for an empty index is
called linear probing. Let’s look at an alternative approach to handling
collisions called separate chaining.

4.1 Separate Chaining

• Clearly linear probing wasn’t a feasible solution to the problem of colli-
sions given that it results in O(n) lookups. Separate chaining is a better
approach which implements each element of the hash table as a linked list.
In separate chaining, collisions are handled by inserting the new value at
the head of a linked list.

• Separate chaining solves at least one of the problems of linear probing,
namely that the hash table is of finite size. If all of the indices in our hash
table are filled and we’re using linear probing to handle collisions, then an
entirely new hash table (i.e. array) needs to be allocated to handle the
overflow. Not so with separate chaining since the linked lists in each index
can grow dynamically as needed.

• The function that points us to a particular index in the hash table given
a value to insert is called a hash function. Thus far, our hash function has
been as simple as taking the first letter of the name we want to insert into
the hash table and converting it to an integer. We might get more fancy
with our hash function by taking the sum of the integer equivalents of the
all of the letters in the name and taking the modulo of this sum to get a
number between 0 and the size of our hash table.

• Searching for a value in a hash table that uses separate chaining is in
O(n/k) where k is the size of the hash table and n is the number of values
it stores. If we assume that our hash function achieves perfectly uniform
distribution, then we’ll end up with a linked list of length n/k at each
index. If in the worst case, the value we’re searching for is at the end of
one of these linked lists, then we’ll have to execute n/k steps in order to
find it.

• Theoretically, O(n/k) is actually the same as O(n) because in the worst
case, every input into the hash table causes a collision and thus our hash
table is just one linked list of length n. However, in practice, this isn’t the
case, and our runtime will be faster.

• In order to store names in a hash table that uses separate chaining to
handle collisions, we’ll need to implement linked lists whose nodes contain
a string and a pointer. Such a node might look like so:

5

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

typedef struct node

{

char word[LENGTH + 1];

struct node *next;

}

node;

LENGTH is a constant which we’ll use to represent the maximal length of a
word that we want to store, plus one for the null terminator. Notice that
we again have to write out struct node within this struct’s definition
because the shorter alias node hasn’t been fully defined yet.

5 Trees and Tries (44:00–59:00)

• Trees are data structures consisting of nodes, each of which may have
any number of children. If each leaf has a maximum of two children, the
tree is a binary tree. Children of the same parent are siblings. Terminal
nodes—those at the bottom that have no children—are called leaves. See
the diagram below.

• A special kind of tree called a binary search tree allows us to use binary
search to do lookups:

6

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

Binary search trees are specially structured so that each parent node is
greater than its left child but less than its right child. If we were searching
for the number 44 in the above tree, we would first check the root node,
55. Because 44 is less than 55, we would go left. Because 44 is greater
than 33 we would then go right and reach the desired result.

• Lookups in a binary search tree run in O(log n). We can verify this using
the diagram above: the height, or number of levels, is log n. Every time
we go left or right in a binary search tree, we are cutting the size of the
original problem in half, just as we did when tearing the phonebook in the
first lecture.

• In a few weeks, we’ll begin looking at database engines like MySQL. In
general, databases achieve high performance for reads and writes using
tree structures (usually B-trees).

• Each node of a binary search tree might be implemented as follows:

typedef struct node

{

int n;

struct node *left;

struct node *right;

}

node;

7

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

Here, we have space in n for the actual value that the node stores as well
as two pointers that point to the left and right child nodes. For any leaf
in the tree, left and right will be NULL.

• Tries are another data structure which might prove useful to you as you
complete Problem Set 6. A trie2 is a type of tree whose nodes are arrays
of pointers to other nodes.Take a look at this visualization of a trie used
to store names in which each array is of size 26 for the number of letters
in the alphabet:

We walk through a trie much the same way we walk through a hash table
with separate chaining. Each letter in the word we’re inserting (converted
to a number between 0 and 25) is also its index into the next level of the
trie. So if we’re inserting the name Turing, we first hash to T, then to U,
then to R, etc. What happens when we get to the end of a word? We
need some sort of flag (represented as a triangle in the diagram above)

2The name supposedly comes from the word “retrieval” although it is typically pronounced
the same as “try.”

8

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

that marks the end of a word. That way, if two words share a prefix (e.g.
Max and Maxwell), we will know that both of them are in our trie if this
end-of-word flag is set at both the X and the last L.

• What’s interesting about a trie is that it never actually stores any letters
or words, but only pointers. The words are implicit.

• The compelling case for tries is that the running time of search is O(m),
where m is the length of the longest word, and is thus independent of
n, the number of words in the trie. Woohoo, constant-time lookup! Of
course, we’re paying for this speedy lookup in memory: given that we
have an array of 26 which is linked to 26 arrays of 26 which are linked
to 26 arrays of 26, and so on, a trie is going to be quite large. We could
save some space by using linked lists instead of arrays at each level, but
in doing so, we’d give up random access which would again slow down our
runtime.

• If we do use arrays to implement our trie, then a node might look like so:

typedef struct node

{

bool is_word;

struct node *children[27];

}

node;

Why 27? We allow for alphabetical characters as well as apostrophes.
is_word is the end-of-word flag we alluded to earlier.

6 Compression (59:00–72:00)

6.1 Morse Code

• You’ve probably heard of Morse code, a system used to transmit messages
as a series of dots and dashes. One confusing aspect of Morse code is that
there is ambiguity in some of the sequences. For example, a dot followed
by a dash could either be the letter A or the letter E followed by the letter
T. Some operators compensated for this by pausing between letters or by
using context to figure out the more likely interpretation.

• Despite this ambiguity, Morse code is compelling in that it reduces more
common letters like E to a single bit. Thus far, we’ve been using 8 bits to
store every single character, but it’s clear that we could use fewer bits to
store some characters in order to save space.

9

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

6.2 Huffman Coding

• Consider the following arbitrary string as a candidate for compression:

Immediately, we can see that the string consists only of the letters A
through E and that we can choose E as the character for which we allocate
the fewest bits since it occurs with the highest frequency.

• To begin the process of compressing this string, we’ll create five trees, one
for each letter that appears in the string:

Now let’s begin combining these trees into a larger tree, beginning with
the two nodes that have the smallest frequencies:

We’ll also start labeling the edges between nodes, arbitrarily but consis-
tently, with the digits 0 and 1. Continuing in this manner, connecting the

10

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

two nodes with the smallest frequencies to a parent node that contains
the sum of those frequencies, we get the following picture:

This type of tree is called a Huffman tree. Using this tree, we can represent
the letters A through E as follows:

A 01

B 0000

C 0001

D 001

E 1

To get these bit representations, we simply follow the edges of the tree that
get us to the leaf corresponding to each letter. To get to A, for example,
we go left (0) and then right (1). To get to B, we go left (0) 4 times. And
so on.

• Notice two things: first, we’ve optimized for the most common letter, E,
which requires the least number of bits; second, none of these bit repre-
sentations is a prefix of the others. There is no confusion in interpreting

11

Computer Science 50
Fall 2011
Scribe Notes

Week 7 Wednesday: October 19, 2011
Andrew Sellergren

the bit sequence 010000, for example, because 01 can only be interpreted
as an A and 0000 can only be interpreted as a B. Unlike Morse code,
Huffman coding is unambiguous.

• For all of these letters, we succeeded in creating binary representations
that required far fewer than 8 bits. Why use ASCII at all, then? Well,
if our string contains more than just the letters A through E, we’re going
to need more bits to represent it. The takeaway here is that if there are
patterns in data, it can be compressed quite effectively.

• We can represent the nodes of a Huffman tree as follows:

typedef struct node

{

char symbol;

int frequency;

struct node *left;

struct node *right;

}

node;

• In the GIF file format, left-to-right lines are simplified as much as possible.
The German flag, for example, consists of three horizontal bars, black, red,
and yellow from top to bottom. Thus the top lines can be represented with
a single black pixel that is repeated all the way across, the middle lines
can be represented with a single red pixel that is repeated all the way
across, and the bottom lines can be represented with a single yellow pixel
that is repeated all the way across. The French flag, although it consists
of three colored bars, as well, can’t be compressed as much as the German
flag using the GIF format. This is because its bars are vertical rather
than horizontal, so each line has to be represented as three pixels, one
blue repeated a third of the way across, one white repeated a third of the
way across, and one red repeated a third of the way across. You can see
this in their file sizes: the French flag is 8 kilobytes in size whereas the
German flag is 4 kilobytes in size.

• The same principle can be applied to movie compression: in each frame,
you can throw away information that hasn’t changed since the last frame.

7 Teaser (72:00–75:00)

• As a teaser for what’s to come, watch as David alters the course website’s
HTML so that Rob’s dreamy eyes watch over you as you browse!

12

http://cs50.tv/2011/fall/lectures/7/week7w.mp4

	Announcements and Demos (0:00–2:00)
	Looking Forward (2:00–5:00)
	From Last Time (5:00–18:00)
	Hash Tables (18:00–44:00)
	Separate Chaining

	Trees and Tries (44:00–59:00)
	Compression (59:00–72:00)
	Morse Code
	Huffman Coding

	Teaser (72:00–75:00)

