
Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–4:00) 2

2 PHP (4:00–54:00) 2
2.1 From C to PHP . 2
2.2 Re-implementing Problem Set 6 3
2.3 Frosh IMs . 5

2.3.1 register0.php . 5
2.3.2 register1.php . 7
2.3.3 register2.php . 7
2.3.4 register3.php . 8
2.3.5 froshims4.php . 10
2.3.6 froshims5.php . 12

3 Database-driven Websites (54:00–73:00) 14
3.1 Problem Set 7 . 14
3.2 More with Frosh IMs . 15

3.2.1 register8.php . 16

1

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–4:00)

• David is on Team Bowden! And he has Bowden Fever!

• CS50 Dinner will be held this Wednesday at 6 p.m. RSVP if you’d like to
come!

• CS50 Finance is the first of two web-based problem sets which you will
complete over the next two weeks. We’ve provided you with a framework
which you might find useful for the Final Project, as well.

• Register for seminars if you haven’t already. This year, we are featur-
ing more seminars than ever before, including a few on Windows mobile
programming presented by Microsoft themselves. RIMM has also kindly
donated some BlackBerry Bolds for those interested in BlackBerry Final
Projects.

2 PHP (4:00–54:00)

2.1 From C to PHP

• PHP is fundamentally different from C in that it is interpreted, not com-
piled. That means it isn’t converted to binary until it is actually run. One
advantage of this is not having to recompile your program every time you
make a change. Another advantage of interpreted languages is that they
tend to be higher level meaning you don’t have to worry about pointers
and memory management because they are built in.

• The PHP manual will prove to be a valuable resource to you as you begin
this next problem set.

• Syntactically, PHP is very similar to C. Conditions, Boolean expressions,
loops, and switches all look the same in PHP as they do in C. In fact,
in PHP, you can also use strings as your switch variable. Arrays in PHP
have no finite size so you can add to them as needed. Variables in PHP
are prefixed with $. PHP is loosely typed, so you don’t have to specify
the type of your variables. In fact, the type of your variables can change
on the fly.

• One additional feature of loops in PHP is the foreach construct:

foreach ($array as $element)

{

// do this with $element

}

This syntax allows you to loop over all of the elements in an array without
needing to know how many there are.

2

http://cs50.net/rsvp
http://cs50.net/seminars
http://www.php.net/manual/en/langref.php

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

• PHP offers associative arrays as built in. For Problem Set 6, you might
have implemented a hash table in order to store the dictionary. An asso-
ciative array is essentially a hash table: its keys can be of any type, not
just integers as in C.

2.2 Re-implementing Problem Set 6

• Turns out that Problem Set 6 only takes a matter of minutes to implement
in PHP. Let’s give it a shot:

<?

$size = 0;

$dictionary = array();

function load($d)

{

global $size;

global $dictionary;

if (!file_exists($d))

return false;

if (!is_readable($d))

return false;

$words = file($d);

foreach($words as $word)

{

$word = chop($word);

$dictionary[$word] = true;

$size++;

}

}

?>

• In order to use global variables within a function, we must redeclare them
with the keyword global. The file_exists and is_readable functions
do some error checking for us and words reads our file into memory, cre-
ating an array in which each line is an element. Then we use the foreach

construct to loop through our array and insert each word into our associa-
tive array (after using chop to trim the newline character from the end),
incrementing $size as we do. That’s it for load!

• Note that the opening and closing tags can also be written as <?php and
?>. Web servers must be configured to recognize the short tags we use

3

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

above, but most are.

• The size function is even easier to implement:

function size()

{

global $size;

return $size;

}

• Finally, check is perhaps the most interesting function to implement, al-
though it too is quite simple:

function check($w)

{

global $dictionary;

$w = strtolower($w);

return $dictionary[$w];

}

All we need to do is convert the word to all lowercase and check whether
it is present as a key in our associative array. Done!

• Why did we bother implementing Problem Set 6 in C, then? Although
PHP is much faster than C for development, it is much slower than C
for execution. In general, interpreted languages are much slower than
compiled languages because they must be translated into binary during
every execution whereas compiled languages are already translated into
binary after the compilation step. When we really care about performance,
as we did in Problem Set 6, we’re willing to spend more time writing code.

• To prove to you that PHP is slower than C, we’ll run these implementa-
tions side by side. Whereas the PHP implementation takes about 0.5
seconds to spellcheck austinpowers.txt, the C implementation takes
only 0.01 seconds. Note that at the top of speller, our PHP version
of speller.c, there is a shebang, a sharp (#) followed by a bang (!) fol-
lowed by a path to a program (/usr/bin/php/) which enables this code
to be executable from the command line.

• Why write in PHP at all then? In the context of web programming, the
execution time of a program on the server is not necessarily the bottleneck:
the web request’s trip to and from the client is the more likely culprit.
Moreover, most web servers offer the ability to cache PHP meaning that
subsequent executions of the same script will be much faster than the first.

4

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

2.3 Frosh IMs

2.3.1 register0.php

• Recall from last time that the action attribute of a form element specifies
where the form is submitted. In froshims0.php, we specify register0.php

for the action attribute. The method attribute can be either get or post
depending on if we want the parameters passed in the URL or more se-
curely in the HTTP headers.

• register0.php looks as follows:

<?

/***

* register0.php

*

* Computer Science 50

* David J. Malan

*

* Dumps contents of $_POST.

***/

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

<pre>

<? print_r($_POST); ?>

</pre>

</body>

</html>

print_r is a useful diagnostic function that recursively prints the contents
of a variable, in this case, the special superglobal variable $_POST, which
contains the parameters passed from our form via the POST method. If
we actually submit the form, we might get something like this:

5

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

Array

{

[name] => David

[captain] => on

[gender] => M

[dorm] => Matthews

}

on is the value that’s sent for a checked checkbox.

• In addition to $_POST, there are a number of superglobal variables in PHP:

– $_COOKIE

– $_GET

– $_POST

– $_SERVER

– $_SESSION

$_GET is the equivalent of $_POST for GET requests. $_SERVER stores the
values of some server variables as well as the user’s IP address and browser
information, and $_COOKIE stores the user’s cookie, which we’ll talk about
shortly. $_SESSION is a variable that allows a website to remember some
information about a user until she navigates away. By default, HTTP is
a stateless protocol, meaning that as soon as a webpage is downloaded
from a server, the connection to the client is severed and the server more
or less forgets about the state of the client. To implement something like
a shopping cart, though, we need some way to keep track of the client’s
state in between connections to the server. This is where the $_SESSION

variable comes in: we can store the contents of the shopping cart in this
server-side variable so that if the same user reconnects to the server, we’ll
be able to quickly recall what she was planning to buy.

6

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

2.3.2 register1.php

• Recall from last time register1.php which implemented some error check-
ing on the user’s form submission:

<?

/***

* register1.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Redirects

* user to froshims1.php upon error.

***/

// validate submission

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

{

header("Location: http://localhost/~jharvard/froshims/froshims1.php");

exit;

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

You are registered! (Well, not really.)

</body>

</html>

The empty function returns true if there’s nothing in the variable it is
passed. The logic above, then, checks if the user failed to pass a name,
gender, or dorm via the form. If he did, then he will be redirected back to
the form using the Location header. Notice that the HTML at the bottom
of the file is only sent to the user if he did pass name, gender, and form:
if he didn’t, he would be redirected before it was printed out.

2.3.3 register2.php

• register2.php demonstrates how we can commingle PHP and HTML:

7

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

<?

/***

* register2.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Informs user of

* any errors.

**/

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

<? if (empty($_POST["name"]) || empty($_POST["gender"]) ||

empty($_POST["dorm"])): ?>

You must provide your name, gender, and dorm!

Go back.

<? else: ?>

You are registered! (Well, not really.)

<? endif ?>

</body>

</html>

The colon at the end of our if condition tells PHP to execute whatever’s
below (and only what’s below) even though we’re exiting PHP mode with
a closing ?> tag.

2.3.4 register3.php

• We gave you a preview last time of register3.php, which sends an e-mail
to David upon form submission:

8

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

<?

/***

* register3.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Reports registration

* via email. Redirects user to froshims3.php upon error.

**/

// validate submission

if (!empty($_POST["name"]) && !empty($_POST["gender"]) && !empty($_POST["dorm"]))

{

$to = "malan@cs50.net";

$subject = "Registration";

$body = "This person just registered:\n\n" .

$_POST["name"] . "\n" .

$_POST["captain"] . "\n" .

$_POST["gender"] . "\n" .

$_POST["dorm"];

$headers = "From: malan@cs50.net\r\n";

mail($to, $subject, $body, $headers);

}

else

{

header("Location: http://localhost/~jharvard/froshims/froshims3.php");

exit;

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

You are registered! (Really.)

</body>

</html>

The dot operator concatenates strings. The mail function actually sends
the e-mail.

9

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

2.3.5 froshims4.php

• Thus far, our forms have submitted to a separate page. froshims4.php,
however, submits to itself:

<?

/***

* froshims4.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Submits to itself.

**/

// if form was actually submitted, check for error

if (isset($_POST["action"]))

{

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

$error = true;

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

<div style="text-align: center">

<h1>Register for Frosh IMs</h1>

<? if ($error): ?>

<div style="color: red">You must fill out the form!</div>

<? endif ?>

<form action="froshims4.php" method="post">

<table style="border: 0; margin-left: auto;

margin-right: auto; text-align: left">

<tr>

<td>Name:</td>

<td><input name="name" type="text"></td>

</tr>

<tr>

<td>Captain:</td>

<td><input name="captain" type="checkbox"></td>

10

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

</tr>

<tr>

<td>Gender:</td>

<td>

<input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M

</td>

</tr>

<tr>

<td>Dorm:</td>

<td>

<select name="dorm">

<option value=""></option>

<option value="Apley Court">Apley Court</option>

<option value="Canaday">Canaday</option>

<option value="Grays">Grays</option>

<option value="Greenough">Greenough</option>

<option value="Hollis">Hollis</option>

<option value="Holworthy">Holworthy</option>

<option value="Hurlbut">Hurlbut</option>

<option value="Lionel">Lionel</option>

<option value="Matthews">Matthews</option>

<option value="Mower">Mower</option>

<option value="Pennypacker">Pennypacker</option>

<option value="Stoughton">Stoughton</option>

<option value="Straus">Straus</option>

<option value="Thayer">Thayer</option>

<option value="Weld">Weld</option>

<option value="Wigglesworth">Wigglesworth</option>

</select>

</td>

</tr>

</table>

<input name="action" type="submit" value="Register!">

</form>

</div>

</body>

</html>

By submitting to a separate page, we either forced the user to click a link
to go back or bounced him back automatically without any explanation.
You probably already know how frustrating an experience this can be
when you go back and all of your previously entered form data is gone.

• To make for a better user experience, we can do error checking before

11

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

leaving the form page. In this example, our submit button has a name

attribute set to action. At the top of the page, before any HTML is
outputted, we check if the action key in the $_POST array is set. If it’s
set, it’s because the user has already submitted the form, so we go ahead
and validate his name, dorm, and gender. If any of these variables is
empty, we set a variable named $error to true which we’ll use later in
the HTML in order to output an error message if necessary. Although the
form fields are still cleared, this is arguably a better user experience than
having to navigate back.

• As a sidenote, PHP has errors, warnings, and notices. In C, we made all
three of them cause compilation to fail. In PHP, we will disable notices.

2.3.6 froshims5.php

• froshims5.php also submits to itself, but manages to keep the name field
populated upon error:

<?

/***

* froshims5.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Submits to itself.

* Pre-populates name field upon error.

**/

// if form was actually submitted, check for error

if (isset($_POST["action"]))

{

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

$error = true;

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

<div style="text-align: center">

<h1>Register for Frosh IMs</h1>

12

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

<? if ($error): ?>

<div style="color: red">You must fill out the form!</div>

<? endif ?>

<form action="froshims5.php" method="post">

<table style="border: 0; margin-left: auto;

margin-right: auto; text-align: left">

<tr>

<td>Name:</td>

<td><input name="name" type="text"

value="<?= htmlspecialchars($_POST["name"]) ?>"></td>

</tr>

<tr>

<td>Captain:</td>

<td><input name="captain" type="checkbox"></td>

</tr>

<tr>

<td>Gender:</td>

<td>

<input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M

</td>

</tr>

<tr>

<td>Dorm:</td>

<td>

<select name="dorm">

<option value=""></option>

<option value="Apley Court">Apley Court</option>

<option value="Canaday">Canaday</option>

<option value="Grays">Grays</option>

<option value="Greenough">Greenough</option>

<option value="Hollis">Hollis</option>

<option value="Holworthy">Holworthy</option>

<option value="Hurlbut">Hurlbut</option>

<option value="Lionel">Lionel</option>

<option value="Matthews">Matthews</option>

<option value="Mower">Mower</option>

<option value="Pennypacker">Pennypacker</option>

<option value="Stoughton">Stoughton</option>

<option value="Straus">Straus</option>

<option value="Thayer">Thayer</option>

<option value="Weld">Weld</option>

<option value="Wigglesworth">Wigglesworth</option>

</select>

</td>

13

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

</tr>

</table>

<input name="action" type="submit" value="Register!">

</form>

</div>

</body>

</html>

The htmlspecialchars function ensures that the user’s input is displayed
literally and doesn’t muck with our website’s tags. In this case, we’re
printing what the user inputted for his name, if anything, as the value

attribute of the name field.

• The <?= syntax is shorthand for <? echo or <? print.

• If we don’t call the htmlspecialchars function before printing the user’s
input, his input can actually mess up the source code of our webpage. For
example, a user might input ’’>HAHAHA and add some laughter to our
page outside the bounds of the form. Worse, a malicious user might inject
a script tag containing some JavaScript that would steal your cookie for
a particular website. If we do call the htmlspecialchars function, then
this same input will be converted to ">HAHAHA using
so-called HTML entities in place of angle brackets and quotation marks.

3 Database-driven Websites (54:00–73:00)

• Before we examine the most compelling version of our freshman intramu-
rals registration page, let’s talk about the database behind it. A database
is a storage platform that organizes persistent data into tables. You can
think of a database and its tables as an Excel file and the spreadsheets
within it, respectively.

• Database engines abound. There are Microsoft Access, MySQL, Oracle,
and Microsoft SQL Server just to name a few. We’ll be using MySQL
because it’s free and open-source (i.e. the source code is publicly available
and modifiable). Facebook is one of MySQL’s largest proponents and has
shown that MySQL can be scalable enough to run enterprise applications.
MySQL is generally very popular and is widely supported by domain hosts.
To interact with our database server, we’ll be using phpMyAdmin, another
excellent piece of free, open-source software.

3.1 Problem Set 7

• For Problem Set 7, you will begin with a users table that contains columns
for user ID, username, and password hash. Why a password hash instead
of the password itself? By storing the hash instead of the password itself,

14

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

we limit the damage that a malicious user can do by gaining access to this
table; even if he is able to download all the rows, he still hasn’t stolen any
passwords since they are one-way encrypted.

• SQL, or structured query language, isn’t exactly a programming language.
Rather, it is a language that enables us to get at the data that is stored
in databases. For our purposes, SQL boils down to four basic commands:

– INSERT

– SELECT

– UPDATE

– DELETE

• To open phpMyAdmin, navigate to http://localhost/phpmyadmin on
the Appliance. You’ll be prompted for a username and password which,
by default, are jharvard and crimson, respectively.

• The specification for Problem Set 7 will instruct you to execute some
SQL commands within phpMyAdmin which will create the aforementioned
users table.

3.2 More with Frosh IMs

• To organize our frosh IMs data, we’ll begin by creating a new database
(by navigating to the home page and clicking the Databases tab) which
we’ll call jharvard_week9. Note that the user jharvard has privileges to
create any database beginning with jharvard_. When we click the Create
button, we’ll see that the following SQL command was executed:

CREATE DATABASE jharvard_week9;

Herein lies the advantage of phpMyAdmin: it allows you to point and
click in order to execute somewhat arcane SQL commands.

• Intuitively, we can organize our frosh IMs registration information into a
single table called registrants that contains columns for name, gender,
dorm, and captainship. For performance reasons, MySQL requires strict
data typing, so we need to decide ahead of time what data types these
four columns will have. Let’s go with VARCHAR (a type of string which can
have variable length) for name, with a maximum length of 128, BOOLEAN
for captain, CHAR for gender (although there are many different data types
that could work here) with a maximum length of 1, and VARCHAR for dorm,
with a maximum length of 128.

• The string type CHAR has the downside that if you specify a length of
64, every entry in this column will take up 64 bytes even if it’s not 64
characters long. VARCHAR optimizes by only storing the exact number of

15

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

bytes that are needed. The tradeoff, however, is that VARCHAR is slower
for lookups. If MySQL knows exactly where each string begins and ends,
as with a CHAR type, it can jump quickly between entries as it searches.

• Most of the other dropdown menus displayed during the creation of a
table aren’t all that important. In the Attributes menu, we could choose
UNSIGNED for our an integer column if we don’t want to waste a bit to
store negative numbres. The Index menu allows us to specify a column
for which lookups will be optimized. If you designate a column as an
INDEX, MySQL will build a tree structure under the hood so that finding
a particular value in that column is more efficient. The Null checkbox
indicates where the special value NULL is allowed in this column.

• When we click the Save button, the table will be created, but we’ll also
see the actual SQL statement which was executed. By the way, don’t fret
if you see Collation defined as something like latin swedish ci. This is just
because the creators of MySQL were Swedish.1 Thankfully, the Swedish
character set overlaps with the English character set.

3.2.1 register8.php

• Let’s take a look at how we will interact with our newly created database
using PHP in register8.php:

<?

/***

* register8.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Records registration

* in database. Redirects user to froshims8.php upon error.

**/

// validate submission

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

{

header("Location: http://localhost/~jharvard/froshims/froshims8.php");

exit;

}

// connect to database

mysql_connect("localhost", "jharvard", "crimson");

mysql_select_db("jharvard_week9");

1Bork bork bork!

16

http://www.youtube.com/watch?v=sY_Yf4zz-yo

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

// scrub inputs

$name = mysql_real_escape_string($_POST["name"]);

if ($_POST["captain"])

$captain = 1;

else

$captain = 0;

$gender = mysql_real_escape_string($_POST["gender"]);

$dorm = mysql_real_escape_string($_POST["dorm"]);

// prepare query

$sql = "INSERT INTO registrants (name, captain, gender, dorm)

VALUES(’$name’, $captain, ’$gender’, ’$dorm’)";

// execute query

mysql_query($sql);

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

You are registered! (Really.)

</body>

</html>

First, we connect to the database server by providing our login credentials
to the mysql_connect function. Second, because there will be multiple
databases on this server, we must select ours by calling the mysql_select_db
function. Third, we need to scrub the data that the user has provided.
That is, because there are a lot of ways that malicious users can sabotage
our database if we blindly pass their inputs to the database server, we
need to go through a process of cleaning those inputs. We do this with
the mysql_real_escape_string function. Fourth, we will create a SQL
query and execute it using the mysql_query function. Assuming all of
these steps are successful, the user’s data will be inserted into our MySQL
database.

• The format of a MySQL INSERT statement is roughly as follows: INSERT INTO

followed by the table name, a comma-separated list of columns in paren-
theses, the keyword VALUES, and a comma-separated list of values in paren-
theses.

• Notice that to print the value of a variable like $gender, we need only write

17

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Monday: October 31, 2011
Andrew Sellergren

that variable’s name between quotation marks. It will be interpolated, or
automatically replaced with its value.

• If we navigate to froshims8.php, which is nearly identical to earlier ver-
sions of the form, and enter in our data, we see a message indicating that
we’ve successfully registered. The real test comes, however, when we check
the contents of our database using phpMyAdmin. And ta-da, it’s there!

18

	Announcements and Demos (0:00–4:00)
	PHP (4:00–54:00)
	From C to PHP
	Re-implementing Problem Set 6
	Frosh IMs
	register0.php
	register1.php
	register2.php
	register3.php
	froshims4.php
	froshims5.php

	Database-driven Websites (54:00–73:00)
	Problem Set 7
	More with Frosh IMs
	register8.php

