
Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–4:00) 2

2 From Last Time (4:00–10:00) 2
2.1 froshims5.php . 2

3 More with Frosh IMs (10:00–38:00) 4
3.1 froshims6.php . 4
3.2 froshims7.php . 7
3.3 register8.php . 9
3.4 registrants.php . 11

4 Sessions (38:00–57:00) 13
4.1 counter.php . 13

1

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–4:00)

• Another CS50 Lunch this Friday! RSVP here. This week we’ll be joined
by Eugene Chung of NEA and Andrew McCollum, formerly of Facebook.

• Don’t forget to check out the CS50 Seminars. Microsoft has now kindly
contributed some Windows smartphones to supplement the BlackBerry
phones contributed by RIMM.

• Mark Zuckerberg will be visiting campus on Monday! Space in the panel
session on Monday night will be limited, so follow this link and do a
keyword search for 31911 to throw your name in the hat. And, sorry,
don’t get your hopes up: Mark will be visiting MIT during lecture on
Monday, so don’t come to Sanders expecting to see anyone more famous
than David.

• A special shout out to Jason Hirschhorn who taught section on Monday
while dressed as a giant pumpkin (and wearing nothing underneath).

2 From Last Time (4:00–10:00)

2.1 froshims5.php

• We looked at creating dynamic websites using PHP, a programming lan-
guage, and MySQL, a database language. Recall froshims5.php:

<?

/***

* froshims5.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Submits to itself.

* Pre-populates name field upon error.

**/

// if form was actually submitted, check for error

if (isset($_POST["action"]))

{

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

$error = true;

}

?>

<!DOCTYPE html>

2

http://cs50.net/rsvp
http://www.linkedin.com/in/genechunk
http://en.wikipedia.org/wiki/Andrew_McCollum
http://cs50.net/seminars
https://harvard-csm.symplicity.com/students

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

<div style="text-align: center">

<h1>Register for Frosh IMs</h1>

<? if ($error): ?>

<div style="color: red">You must fill out the form!</div>

<? endif ?>

<form action="froshims5.php" method="post">

<table style="border: 0; margin-left: auto;

margin-right: auto; text-align: left">

<tr>

<td>Name:</td>

<td><input name="name" type="text"

value="<?= htmlspecialchars($_POST["name"]) ?>"></td>

</tr>

<tr>

<td>Captain:</td>

<td><input name="captain" type="checkbox"></td>

</tr>

<tr>

<td>Gender:</td>

<td>

<input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M

</td>

</tr>

<tr>

<td>Dorm:</td>

<td>

<select name="dorm">

<option value=""></option>

<option value="Apley Court">Apley Court</option>

<option value="Canaday">Canaday</option>

<option value="Grays">Grays</option>

<option value="Greenough">Greenough</option>

<option value="Hollis">Hollis</option>

<option value="Holworthy">Holworthy</option>

<option value="Hurlbut">Hurlbut</option>

<option value="Lionel">Lionel</option>

<option value="Matthews">Matthews</option>

<option value="Mower">Mower</option>

<option value="Pennypacker">Pennypacker</option>

3

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

<option value="Stoughton">Stoughton</option>

<option value="Straus">Straus</option>

<option value="Thayer">Thayer</option>

<option value="Weld">Weld</option>

<option value="Wigglesworth">Wigglesworth</option>

</select>

</td>

</tr>

</table>

<input name="action" type="submit" value="Register!">

</form>

</div>

</body>

</html>

One nice feature of this version of our Frosh IMs registration form was that
if the user failed to provide all the necessary inputs, he would be shown
an error message and his name would be prepopulated in the name field.
Notice how easy it was to accomplish this and also how many websites
still don’t do it. User interface design is a highly underappreciated aspect
of web programming, to be sure.

• htmlspecialchars was a function we used to “scrub” the user’s input and
prevent HTML or JavaScript from being injected into our website. This is
the first of many instances in which we will distrust user input. Consider
that HTML forms which use the GET method can be easy linked to from
e-mails. Many phishing attacks rely on this to cause user’s to accidentally
submit forms simply by being tricked into clicking on a link.

• Although froshims5.php prepopulated the user’s name, it did not pre-
populate the user’s dorm upon invalid submission. The dorm field is im-
plemented as a select tag, so we have to handle it slightly differently
than the name field. In order to prepopulate the dorm field, we’ll need to
output an extra attribute selected for the specific option tag that was
chosen by the user.

3 More with Frosh IMs (10:00–38:00)

3.1 froshims6.php

• froshims6.php takes a slightly more elegant approach to creating the
options for the dorm dropdown menu:

4

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

<?

/***

* froshims6.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Submits to itself.

* Generates list of dorms via an array.

**/

// array of dorms

$DORMS = array(

"Apley Court",

"Canaday",

"Grays",

"Greenough",

"Hollis",

"Holworthy",

"Hurlbut",

"Lionel",

"Matthews",

"Mower",

"Pennypacker",

"Stoughton",

"Straus",

"Thayer",

"Weld",

"Wigglesworth"

);

// if form was actually submitted, check for error

if (isset($_POST["action"]))

{

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

$error = true;

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

5

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

<body>

<div style="text-algin: center">

<h1>Register for Frosh IMs</h1>

<? if ($error): ?>

<div style="color: red;">You must fill out the form!</div>

<? endif ?>

<form action="froshims6.php" method="post">

<table style="border: 0; margin-left: auto;

margin-right: auto; text-align: left">

<tr>

<td>Name:</td>

<td><input name="name" type="text"

value="<?= htmlspecialchars($_POST["name"]) ?>"></td>

</tr>

<tr>

<td>Captain:</td>

<td><input name="captain" type="checkbox"></td>

</tr>

<tr>

<td>Gender:</td>

<td>

<input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M

</td>

</tr>

<tr>

<td>Dorm:</td>

<td>

<select name="dorm">

<option value=""></option>

<? foreach ($DORMS as $dorm): ?>

<option value="<?= $dorm ?>"><?= $dorm ?></option>

<? endforeach ?>

</select>

</td>

</tr>

</table>

<input name="action" type="submit" value="Register!">

</form>

</div>

</body>

</html>

6

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

Because we have to output some similar HTML for each of the dorms
in the dropdown, we can abstract away the names of the dorms into an
array named $DORMS. Unfortunately, PHP requires the array function to
be called when initializing an array rather than just writing open and close
square brackets. Using the foreach construct, we loop through all of the
elements of the $DORMS array and print the dorm name as both the value

attribute and the inner HTML of the option tag. Note that the colon at
the end of the foreach construct signifies that we’re still inside the loop
even though we’re exiting PHP mode.

• Why aren’t we escaping the name of the dorm? Well, we’re the ones who
created the $DORMS array, so presumably we haven’t attempted to exploit
our own code.

• When we visit froshims6.php and right click to View Source, we see that
the HTML for the dorm dropdown menu is identical to froshims5.php,
with the exception of whitespace.

3.2 froshims7.php

• froshims7.php takes on the challenge of prepopulating the dorm field:

<?

/***

* froshims7.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Submits to itself.

* Generates list of dorms via an array. Pre-populates name and

* dorm fields upon error.

**/

// array of dorms

$DORMS = array(

"Apley Court",

"Canaday",

"Grays",

"Greenough",

"Hollis",

"Holworthy",

"Hurlbut",

"Lionel",

"Matthews",

"Mower",

"Pennypacker",

7

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

"Stoughton",

"Straus",

"Thayer",

"Weld",

"Wigglesworth"

);

// if form was actually submitted, check for error

if (isset($_POST["action"]))

{

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

$error = true;

}

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

<div style="text-align: center">

<h1>Register for Frosh IMs</h1>

<? if ($error): ?>

<div style="color: red;">You must fill out the form!</div>

<? endif ?>

<form action="froshims7.php" method="post">

<table style="border: 0; margin-left: auto;

margin-right: auto; text-align: left">

<tr>

<td>Name:</td>

<td><input name="name" type="text"

value="<?= htmlspecialchars($_POST["name"]) ?>"></td>

</tr>

<tr>

<td>Captain:</td>

<td><input name="captain" type="checkbox"></td>

</tr>

<tr>

<td>Gender:</td>

<td>

<input name="gender" type="radio" value="F"> F

<input name="gender" type="radio" value="M"> M

</td>

8

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

</tr>

<tr>

<td>Dorm:</td>

<td>

<select name="dorm">

<option value=""></option>

<?

foreach ($DORMS as $dorm)

{

if ($_POST["dorm"] == $dorm)

echo "<option selected=‘selected’" .

"value=’$dorm’>$dorm</option>";

else

echo "<option value=‘$dorm’>$dorm</option>";

}

?>

</select>

</td>

</tr>

</table>

<input name="action" type="submit" value="Register!">

</form>

</div>

</body>

</html>

We have the same foreach construct that appeared in froshims6.php

but this time, if the dorm name is what the user selected previously (i.e.
is the value for the dorm key in the $_POST array), then we output the
extra selected attribute as well.

• Question: what does echo do? It’s synonymous with print.

• Question: where is the $dorm variable introduced? It’s defined implicitly
by the foreach construct.

3.3 register8.php

• Recall that along with the destination IP address, a server request is
accompanied by a port number so that the server knows what type of
request it is and how to handle it. For example, HTTP requests are most
often tied to ports 80 and 443 (the latter for SSL), SSH requests are tied
to port 22, FTP requests are tied to port 21, and so on. MySQL requests
are tied to port 3306, by default.

• In register8.php, we use a function mysql_connect to connect to our
MySQL server:

9

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

<?

/***

* register8.php

*

* Computer Science 50

* David J. Malan

*

* Implements a registration form for Frosh IMs. Records registration

* in database. Redirects user to froshims8.php upon error.

**/

// validate submission

if (empty($_POST["name"]) || empty($_POST["gender"]) || empty($_POST["dorm"]))

{

header("Location: http://localhost/~jharvard/froshims/froshims8.php");

exit;

}

// connect to database

mysql_connect("localhost", "jharvard", "crimson");

mysql_select_db("jharvard_week9");

// scrub inputs

$name = mysql_real_escape_string($_POST["name"]);

if ($_POST["captain"])

$captain = 1;

else

$captain = 0;

$gender = mysql_real_escape_string($_POST["gender"]);

$dorm = mysql_real_escape_string($_POST["dorm"]);

// prepare query

$sql = "INSERT INTO registrants (name, captain, gender, dorm)

VALUES(’$name’, $captain, ’$gender’, ’$dorm’)";

// execute query

mysql_query($sql);

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

10

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

You are registered! (Really.)

</body>

</html>

We use localhost as the hostname (the first argument to mysql_connect)
because the web server and the database server are both running on
the same machine, namely the Appliance. In general, it’s not a good
idea to connect to a database server on a different hostname than the
web server since MySQL traffic is not encrypted by default. We use the
mysql_select_db function to choose the jharvard_week9 database, much
like choosing a specific spreadsheet within an Excel file. After we’re con-
nected, we scrub the user’s input using the mysql_real_escape_string

function. Just as we distrust user’s input when it comes to prepopulating
form fields, we distrust user’s input when it comes to inserting into our
database. By scrubbing user’s input, we avoid accidentally deleting or
exposing data in our database.

• On a somewhat related note, one of the top complaints from the Problem
Set 5 survey was getting menu information from dining.harvard.edu. If
this was one of your complaints, then you should take heart knowing that
CS50 has an API for accessing this menu information. Using this API,
you can create your own more intuitive way of displaying and accessing
Harvard menu information. There are other APIs available for accessing
campus events, tweets, maps, news, and more. The HarvardFood API is
implemented as a screen scraper, that is, a program that acts as a web
browser, downloads the menu web page, and parses the HTML to find the
actual menu items.

• The actual SQL statement that inserts data into our database contains
two comma-separated lists of columns and values and not much more. To
execute this statement, we pass it to the mysql_query function.

3.4 registrants.php

• registrants.php is a script that connects to our database and pulls all
existing entries in our registrants table:

<?

// connect to database

mysql_connect("localhost", "jharvard", "crimson");

mysql_select_db("jharvard_week9");

// prepare query

$sql = "SELECT * FROM registrants";

// execute query

$result = mysql_query($sql);

11

https://manual.cs50.net/HarvardFood_API

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

?>

<!DOCTYPE html>

<html>

<head>

<title>Frosh IMs</title>

</head>

<body>

<?

// iterate over results

while ($row = mysql_fetch_array($result))

{

print("");

print(htmlspecialchars($row["name"]));

print("");

}

?>

</body>

</html>

The * is the wildcard operator, meaning select all fields. SQL, by the way,
is case-insensitive (except for field, table, and database names), but as a
matter of style, it’s good practice to capitalize keywords like SELECT.

• What do you actually get back from a database when you execute a SELECT

statement? mysql_query will return you an array of rows. To loop over
this array of rows, we use the mysql_fetch_array function which returns
the next row in the result set as an associative array or false if there are
no more rows left.

• When we navigate to this web page, we see that all of the registrants’
names are displayed as bullet points.

• In the users table we provide you for Problem Set 7, there are fields for
username, password hash, and user ID. This user ID is unique and auto-
incrementing, meaning that every time a user is added to the table, the
maximum user ID increases by 1. Facebook operates similarly: the lower
your user ID (which might be visible in the URL of your profile), the
earlier you joined Facebook. But if we ensure that usernames are unique,
why bother assigning an extra unique identifier? Looking up users by
a number rather than a string should be much faster given that integer
comparisons are less expensive than string comparisons. Using integers as
unique identifiers also optimizes other tables that we might add later. If
we want to implement a table that stores relationships between users, we

12

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

need only store two integers, one for each user, rather than two strings,
which will most likely require more bytes.

4 Sessions (38:00–57:00)

4.1 counter.php

• We mentioned last time that HTTP is a stateless protocol, meaning that as
soon as a request is served with a response, the connection to the server
is severed and the server more or less “forgets” about the client. This
isn’t very convenient for sites that implement things like shopping carts,
however, since the web server needs a way to remember which items a user
has selected for purchase. This is where sessions come in.

• counter.php demonstrates a very simple use of sessions:

<?

/***

* counter.php

*

* Computer Science 50

* David J. Malan

*

* Implements a counter. Demonstrates sessions.

***/

// enable sessions

session_start();

// check counter

if (isset($_SESSION["counter"]))

$counter = $_SESSION["counter"];

else

$counter = 0;

// increment counter

$_SESSION["counter"] = $counter + 1;

?>

<!DOCTYPE html>

<html>

<head>

<title>Counter</title>

</head>

<body>

You have visited this site <?= $counter ?> time(s).

13

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

</body>

</html>

To begin working with sessions, we call session_start, a function which
tells PHP to give our program access to a special superglobal variable
named $_SESSION. This is a variable in which we can store anything we
want to related to the particular user that is currently interacting with
our site. By storing this information in a server-side variable, we allow a
user to be remembered by the server even after he or she closes our site.

• In this simple script, we check to see if there is a counter index set in
$_SESSION. If there is, we set a local variable $counter to the value stored
in $_SESSION. If this index isn’t set, we initialize $counter to 0. Finally,
we store in $_SESSION the value of $counter + 1.

• The effect of this simple script is to report how many times the user has
visited this page. As we hit refresh over and over, the number increases.
For the purposes of a site like Facebook or Amazon, this counter variable
might be replaced by a simple flag indicating whether the user is logged
in or not. That way, the user doesn’t have to be prompted to login on
every single page.

• To dig more into this concept of sessions, let’s turn to our old friend
Firebug. When we click on the Net tab in Firebug and enable it, we
get a view of HTTP requests that are made by the browser much like
we did using Live HTTP Headers. When we visit counter.php, we see
that a single GET request is made to Remote IP 127.0.0.1:80, the numeric
equivalent of localhost, on port 80, the default port for HTTP. The size of
the request was 141 bytes. When we expand the request, we can see the
actual headers that were sent back and forth between client and server.
Among other things, the client sends its user agent and the encodings it
accepts (for example, gzip indicates that the browser supports a type of
compression that helps expedite requests and responses). In its response,
the server sends the date and time, its operating system and PHP version
information (which can be a security concern given that a malicious user
might know of exploits in older versions of software that have been fixed in
later versions), and, in the Set-Cookie header, a unique session identifier
that might look like the following:

PHPSESSID=qcm25jiui0bvjasf05o2t509a0

This pseudorandom string is a so-called cookie which can be used to iden-
tify a particular user. To cooperate with the server, the client will store
this cookie locally and send it back to the server whenever it makes an-
other request of it. You can think of cookies as handstamps that tell the
server: this user has been here before, look up anything we know about
her.

14

Computer Science 50
Fall 2011
Scribe Notes

Week 9 Wednesday: November 2, 2011
Andrew Sellergren

• Sessions and cookies work great in practice, but they are also prone to
abuse. By default, cookies are sent in plaintext from client to server. If
a malicious user places himself between client and server and intercepts
a request that contains a cookie, he can use that cookie to impersonate
another user. The Firefox plugin Firesheep demonstrates just how easy
it is to steal cookies in this manner. One way of addressing this vul-
nerability is to encrypt traffic sent between client and server, as is the
case for requests made to URLs beginning with https. Still, most web-
sites, including Facebook, do not use https by default because it is more
expensive. If this concerns you,1 you might consider downloading the
Force-TLS or HTTPS Everywhere Firefox plugins which attempt to use
https whenever it is supported by a website. Another way of addressing
this vulnerability is using wireless network encryption such as WPA2. You
may have (or should have) enabled this on your home wireless network so
that your traffic is not easily readable by those who shouldn’t be reading
it. If you’re on a public wireless network that doesn’t support encryption,
you can login to a VPN (virtual private network) such as Harvard’s which
will encrypt your traffic and send it to an intermediate server which you
presumably trust before sending it to the web server that will actually
fulfill your request.

1It probably should, even if you don’t wear a tinfoil hat.

15

http://codebutler.com/firesheep
https://addons.mozilla.org/en-US/firefox/addon/force-tls/
https://www.eff.org/https-everywhere
https://vpn.fas.harvard.edu

	Announcements and Demos (0:00–4:00)
	From Last Time (4:00–10:00)
	froshims5.php

	More with Frosh IMs (10:00–38:00)
	froshims6.php
	froshims7.php
	register8.php
	registrants.php

	Sessions (38:00–57:00)
	counter.php

