This is CS50.
Harvard College Fall 2011

Problem Set 1: C

due by noon on Thu 9/15
Per the directions at this document’s end, submitting this problem set involves submitting source code
as well as filling out a Web-based form, which may take a few minutes, so best not to wait until the very

last minute, lest you spend a late day unnecessarily.

Do take advantage of Week 2’s office hours as well Week 1’s supersections
(or video thereof at https://www.cs50.net/sections/).

If you have any questions or trouble, head to http://help.cs50.net/.

Be sure that your code is thoroughly commented
to such an extent that lines’ functionality is apparent from comments alone.

Goals.

. Get comfortable with Linux.
. Start thinking more carefully.
. Solve some problems in C.

Recommended Reading.

. Sections 1—-7,9,and 10 of http://www.howstuffworks.com/c.htm.
. Chapters 1 — 6 of Programming in C.

diff hackerl.pdf hackerl.pdf.

i Hacker Edition expects commas in currency.
. Hacker Edition plays with credit cards instead of coins.
. Hacker Edition demands vertical bars instead of horizontal ones.

0<16



This is CS50.
Harvard College Fall 2011

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or accidentally shared in the course’s virtual terminal room) or lifting material from a book, website, or
other source—even in part—and presenting it as your own constitutes academic dishonesty, as does
showing or giving your work, even in part, to another student or soliciting the work of another
individual. Similarly is dual submission academic dishonesty: you may not submit the same or similar
work to this course that you have submitted or will submit to another. Nor may you provide or make
available solutions to problem sets to individuals who take or may take this course in the future.
Moreover, submission of any work that you intend to use outside of the course (e.g., for a job) must be
approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Grades.

Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?
All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all

other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course’s instructor.

1<16



This is CS50.
Harvard College Fall 2011

Getting Started.

|

O

Take CS50.

Recall that the CS50 Appliance is a “virtual machine” (running an operating system called Fedora,
which itself is a flavor of Linux) that you can run inside of a window on your own computer,
whether you run Windows, Mac OS, or even Linux itself. To do so, all you need is a “hypervisor”
(otherwise known as a “virtual machine monitor”), software that tricks the appliance into thinking
that it’s running on “bare metal.” One such hypervisor is called VirtualBox, made by Oracle
(formerly Sun Microsystems), which just so happens to be free!

Alternatively, you could buy a new computer, install Fedora on it (i.e., bare metal), and use that!
But VirtualBox lets you do all that for free with whatever computer you already have. Plus, the
CS50 Appliance is pre-configured for CS50, so, as soon as you install it, you can hit the ground
running.

So let’s get both VirtualBox and the CS50 Appliance installed. Head to

https://manual.cs50.net/Appliance#VirtualBox

where instructions await. If you run into any problems whatsoever, simply post to the Appliance
category at help.cs50.net!

Once you have the CS50 Appliance installed, go ahead and start it (as by launching VirtualBox,
clicking the appliance in VirtualBox’s lefthand menu, then clicking Start). A small window should
open, inside of which the appliance should boot. A few seconds or minutes later, you should find
yourself logged in as John Harvard (whose username is jharvard and whose password is crimson),
with John Harvard’s desktop before you.

If you find that the appliance runs unbearably slow on your computer, particularly if several
years old or a somewhat slow netbook, let us know viahelp.cs50.net, and we’ll offer some
tips on boosting its speed.

By default, the appliance’s resolution is only 800 x 600 (i.e., 800 pixels wide by 600 pixels tall), in
case you have a small screen. But you can increase it to 1024 x 768 via Menu > Preferences >
Display if you’d like.!

Feel free to poke around, particularly the CS50 Menu in the appliance’s bottom-left corner. You
should find the graphical user interface (GUI), called Xfce, reminiscent of both Mac OS and
Windows. Linux actually comes with a bunch of GUIs; Xfce is just one. If you’re already familiar
with Linux, you’re welcome to install other software via Menu > Administration > Add/Remove
Software, but the appliance should have everything you need for now. You're also welcome to
play with the appliance’s various features, per the instructions at

https://manual.cs50.net/Appliance#How _to Use Appliance

! To increase its resolution further, see https://manual.cs50.net/Appliance#How_to Change Resolution.

2<16



This is CS50.
Harvard College Fall 2011

but this problem set will explicitly mention anything that you need know or do.

Notice, though, that the appliance will “capture” your trackpad or mouse, whereby once you’ve
clicked inside of the appliance, you can no longer move your cursor (i.e., arrow) outside of the
appliance’s window! Not to worry. To release your cursor from the appliance’s clutches, simply
hit VirtualBox’s “host key” on your keyboard: on Mac OS, hit left-3; on Windows or Linux, hit
right-Ctrl. Once you do, you should have full control of your trackpad or mouse again.

Even if you just downloaded the appliance, ensure that it’'s completely up-to-date by selecting
Menu > Administration > Software Update. If updates are indeed available, click Install Updates.
If prompted with Additional confirmation required, click Continue. If warned that the software is
not from a trusted source and prompted for a password, input crimson, then click Authenticate.
If prompted a few seconds or minutes later to log out and back in, click Log Out and then log back
in as John Harvard, when prompted, with username jharvard and password crimson.

Okay, let’s create a folder (otherwise known as a “directory”) in which your code for this problem
set will soon live. Go ahead and double-click Home on John Harvard’s desktop (in the appliance’s
top-left corner). A window entitled jharvard - File Manager should appear, indicating that you're
inside of John Harvard’s “home directory” (i.e., personal folder). Be sure that jharvard is indeed
highlighted in the window’s top-left corner, then select File > Create Folder... and input hackerl
(in all lowercase, with no spaces) when prompted for a new name. Then click Create. A new
folder called hackerl should appear in the window. Go ahead and double-click it. The window’s
title should change to hackerl - File Manager, and you should see an otherwise empty folder
(since you just created it). Notice, though, that atop the window are two buttons, jharvard and
hackerl, that indicate where you were and where you are, respectively; you can click buttons like
those to navigate back and forth easily.

Okay, go ahead and close any open windows, then select Menu > Programming > gedit. (Recall
that the CS50 Menu is in the appliance’s bottom-left corner.) A window entitled Unsaved
Document 1 - gedit should appear, inside of which is a tab entitled Unsaved Document 1. Clearly
the document is just begging to be saved. Go ahead and type hello (or the ever-popular asdf)
in the tab, and then notice how the tab’s name is now prefixed with an asterisk (*), indicating that
you’ve made changes since the file was first opened. Select File > Save, and a window entitled
Save As should appear. Input hello.txt next to Name, then click jharvard under Places. You
should then see the contents of John Harvard’s home directory, namely Desktop and hackerl.
Double-click hackerl, and you should find yourself inside that empty folder you created. Now, at
the bottom of this same window, you should see that the file’s default Character Encoding is
Unicode (UTF-8) and that the file’s default Line Ending is Unix/Linux. No need to change either;
just notice they’re there. That the file’s Line Ending is Unix/Linux just means that gedit will insert
(invisibly) \n at the end of any line of text that you type. Windows, by contrast, uses \r\n, and
Mac OS uses \r, but more on those details some other time.

Okay, click Save in the window’s bottom-right corner. The window should close, and you should

see that the original window’s title is now hello.txt (~/hackerl) - gedit. The parenthetical just
means that hello.txt is inside of hackerl, which itself is inside of ~, which is shorthand notation for

3<16



This is CS50
Harvard College Fall 2011

John Harvard’s home directory. A useful reminder is all. The tab, meanwhile, should now be
entitled hello.txt (with no asterisk, unless you accidentally hit the keyboard again).

Okay, with hello.txt still open in gedit, notice that beneath your document is a “terminal window,”
a command-line (i.e., text-based) interface via which you can navigate the appliance’s hard drive
and run programs (by typing their name). Notice that the window’s “prompt” is

jharvard@appliance (~):

which means that you are logged into the appliance as John Harvard and that you are currently
inside of ~ (i.e., John Harvard’s home directory). If that’s the case, there should be a hackerl
directory somewhere inside. Let’s confirm as much.

Click somewhere inside of that terminal window, and the prompt should start to blink. Type

1s

and then Enter. That’s a lowercase L and a lowercase S, which is shorthand notation for “list.”
Indeed, you should then see a (short!) list of the folders inside of John Harvard’s home directory,
namely Desktop and hackerl! Let’s open the latter. Type

cd hackerl

or even

cd ~/hackerl

followed by Enter to change your directory to hackerl (ergo, cd). You should find that your
prompt changes to

jharvard@appliance (~/hackerl):

confirming that you are indeed now inside of ~/hackerl (i.e., a directory called hackerl inside of
John Harvard’s home directory). Now type

1s
followed by Enter. You should see hello.txt! Now, you can’t click or double-click on that file’s
name there; it’s just text. But that listing does confirm that hello.txt is where we hoped it would

be.

Let’s poke around a bit more. Go ahead and type

cd

and then Enter. If you don’t provide cd with a “command-line argument” (i.e., a directory’s
name), it whisks you back to your home directory by default. Indeed, your prompt should now be:

4<16



This is CS50.
Harvard College Fall 2011

jharvard@appliance (~):

Phew, home sweet home. Make sense? If not, no worries; it soon will! It’s in this terminal
window that you’ll soon be compiling your first program! For now, though, close gedit (via File >
Quit) and, with it, hello.txt.

Incidentally, if you encounter an issue whereby clicking icons on John Harvard’s desktop (or in
John Harvard’s home directory or in hackerl) fails to trigger gedit to open, even if those files end
in .c or .txt. (Instead, you may only see a spinning cursor.) If so, not to worry. Simply launch gedit
via Menu > Programming > gedit, and then open the file in question manually via File > Open.

O hai, world!

O

Shall we have you write your first program?

Okay, go ahead and launch gedit. (Remember how?) You should find yourself faced with another
Unsaved Document 1. Go ahead and save the file as hello.c (not hello.txt) inside of hackerl, just
as before. (Remember how?) Once the file is saved, the window’s title should change to
hello.c (~*/hackerl) - gedit, and the tab’s title should change to hello.c. (If either does not, best to
close gedit and start fresh! Or ask for help!)

Go ahead and write your first program by typing these lines into the file (though you’re welcome
to change the words between quotes to whatever you'd like):

#include <stdio.h>

int
main (void)
{
printf ("hello, world!\n");

}

Notice how gedit adds “syntax highlighting” (i.e., color) as you type. Those colors aren’t actually
saved inside of the file itself; they’re just added by gedit to make certain syntax stand out. Had
you not saved the file as hello.c from the start, gedit wouldn’t know (per the filename’s extension)
that you’re writing C code, in which case those colors would be absent. Notice, too, that gedit
sometimes tries to help you along by completing your thought: you should find that, when you
type that first curly parenthesis (and curly brace), the second appears for you automatically.3

Do be sure that you type in this program just right, else you’re about to experience your first bug!
In particular, capitalization matters, so don’t accidentally capitalize words (unless they’re between
those two quotes). And don’t overlook that one semicolon. Cis quite nitpicky!

% Do type in this program keystroke by keystroke inside of the appliance; don’t try to copy/paste from the PDF! Odds are
copy/paste won’t work yet anyway until you install “Guest Additions,” but more on those some other time!
f you find that annoying, you can disable the feature by unchecking Edit > Preferences > Plugins > Bracket Completion.

5<16



This is CS50
Harvard College Fall 2011

When done typing, select File > Save (or hit ctrl-s), but don’t quit. Recall that the leading asterisk
in the tab’s name should then disappear. Click anywhere in the terminal window beneath your
code, and its prompt should start blinking. But odds are the prompt itself is just

jharvard@appliance (~):

which means that, so far as the terminal window’s concerned, you’re still inside of John Harvard’s
home directory, even though you saved the program you just wrote inside of ~/hackerl (per the
top of gedit’s window). No problem, go ahead and type

cd hackerl
or

cd ~/hackerl

at the prompt, and the prompt should change to

jharvard@appliance (~/hackerl):

in which case you’re where you should be! Let’s confirm that hello.c is there. Type

1s

at the prompt followed by Enter, and you should see both hello.c and hello.txt? If not, no
worries; you probably just missed a small step. Best to restart these past several steps or ask for
help!

Assuming you indeed see hello.c, let’s try to compile! Cross your fingers and then type

make hello

at the prompt, followed by Enter. (Well, maybe don’t cross your fingers whilst typing.) To be
clear, type only hello here, not hello.c. If all that you see is another, identical prompt, that
means it worked! Your source code has been translated to Os and 1s that you can now execute.
Type

./hello

at your prompt, followed by Enter, and you should see whatever message you wrote between
quotes in your code! Indeed, if you type

1s
followed by Enter, you should see a new file, hel1lo, alongside hello.cand hello.txt.

If, though, upon running make, you instead see some error(s), it's time to debug! (If the terminal
window’s too small to see everything, click and drag its top border upward to increase its height.)

6<16



This is CS50
Harvard College Fall 2011

If you see an error like expected declaration or something no less mysterious, odds are you made
a syntax error (i.e., typo) by omitting some character or adding something in the wrong place.
Scour your code for any differences vis-a-vis the template above. It’'s easy to miss the slightest of
things when learning to program, so do compare your code against ours character by character;
odds are the mistake(s) will jump out! Anytime you make changes to your own code, just
remember to re-save via File > Save (or ctrl-s), then re-click inside of the terminal window, and
then re-type

make hello

at your prompt, followed by Enter. (Just be sure that you are inside of ~/hackerl within your
terminal window, as your prompt will confirm or deny.) If you see no more errors, try running
your program by typing

./hello

at your prompt, followed by Enter! Hopefully you now see the greeting you wrote? If not, reach
out to help.cs50.net for help! In fact, if you log into help.cs50.net within the appliance
itself (via Menu > Internet > Firefox), you can even attach your code to your post; just take care to
flag it as private.

Incidentally, if you find gedit’s built-in terminal window too small for your tastes, know that you
can open one in its own window via Menu > Programming > Terminal. You can then alternate
between gedit and Terminal as needed, as by clicking either’s name along the appliance’s bottom.

Woo hoo! You’ve begun to program!

Let’s take a short break.

Story Time.

O

We explored in Week 1 how hard drives work, but computers actually have a few types of
memory (i.e., storage), among them level-1 cache, level-2 cache, RAM, and ROM. Curl up with the
article below to learn a bit about each:

http://computer.howstuffworks.com/computer-memory.htm
Odds are you’ll want to peruse, at least, pages 1 through 5 of that article.

That’s it for now. Bet this topic comes up again, though!

7<16



This is CS50
Harvard College Fall 2011

Recall that “style” generally refers to source code’s aesthetics, the extent to which code is
readable (i.e., commented and indented with variables aptly named). Odds are you didn’t have to
give too much thought to style when writing hello.c, given its brevity, but you’re about to start
writing programs where you’ll need to make some stylistic decisions.

Before you do, read over CS50’s Style Guide:

https://manual.cs50.net/Style

Take the Pennies.

O

Recall from Week 0 that, if given the choice between $10,000,000 or a month’s worth of pennies,
whereby you receive a penny the first day, two pennies the second, four pennies the third, and so
forth... take the pennies. (By contrast, if you receive an email from some stranger on the Internet
offering you an opportunity to double your money, maybe think twice.)

Anyhow, why the pennies? Exponentiation. Those pennies add up! Consider how many pennies
you’d receive on the 31st day alone, not to mention on the days leading up to it:

IX2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2%x2%x2%x2%x2x%x2x%x2=1073741824

Put more succinctly, that’s 1 x 2°°. Convert those pennies to dollars (by dividing by 100) and you
get, what, over $10,000,000? Crazy.

What if you were given more than one penny on that first day? Or the month were February, in
which case you’d get shortchanged a few million? (Best to take the pennies in January, March,
May, July, August, October, or December.4) Let’s find out.

Implement, in a file called pennies.c, a program that first asks the user how many days there are
in the month and then asks the user how many pennies he or she will receive on the first day of
that month. The program should then calculate the amount that the user will have received
in total by the end of the month (not just on the last day) if that amount is doubled on every day
but the first, expressed not as pennies but as dollars and cents, with dollars formatted with
commas every three digits. If the user does not type in 28, 29, 30, or 31 for the number of days in
the month, the program should prompt the user to retry. If the user does not input a positive
integer for the first day’s number of pennies, the program should prompt the user to retry.

For instance, your program might behave as follows, whereby boldfaced text represents some
user’s input.

jharvard@appliance (~/hackerl): ./pennies
Days in month: 32

Days in month: 31

Pennies on first day: 1

$21,474,836.47

* 'l admit it. | had to look at a calendar.

8<16



This is CS50
Harvard College Fall 2011

Notice how this output suggests that the program should indeed re-prompt the user if he or she
fails to cooperate with these rules (as by inputting too many days). And notice how the dollars
have been formatted with commas.

How to begin? Well, as before, start by opening gedit and saving an otherwise blank file as
pennies.c. Then, fill the file with some “boilerplate” code like the below:

#include <cs50.h>
#include <stdio.h>

int
main (void)

{

}
Save the file and, just to be safe, try compiling it with

make pennies

in your terminal window, just to make sure you didn’t make any syntactical mistakes, in which
case you'll see errors that will need to be fixed! Then dive back into your code.

Odds are you’ll want a couple of loops, one with which to prompt (and potentially re-prompt) the
user for a number of days, and another with which to prompt (and potentially re-prompt) the user
for a number of first-day pennies. How to get both those numbers? Perhaps the CS50 Library
offers some options?

Of course, if you store the user’s amount due in an int (which is only 32 bits in the CS50
Appliance), the total will be bounded by 2*' — 1 pennies. (Why 2*! and not 2**? And why 1 less
than 2°'?) Best, then, to store your total in a long long, so that the user benefits from 64 bits.
(Don’t worry if users’ totals overflow 64 bits and even go negative; consider it punishment for
greed!)

Do take care to format the user’s total as dollars and cents (to just 2 decimal places), prefixed with
a dollar sign, just as we did in the output above. And do remember to insert commas after every 3
digits to the left of the decimal, as you might normally do. (You must implement those commas
in code and not via a locale environment variable.) So that we can automate some tests of your
code, we ask that your program’s last line of output be the amount owed to a user, followed by
\n. The rest of your program’s personality we leave entirely to you!

If you’d like to play with the staff’s own implementation of pennies in the appliance, you may
execute the below at the terminal window.

~cs50/hackerl/pennies

9<16



This is CS50.
Harvard College Fall 2011

Bad Credit.

O

Odds are you have a credit card in your wallet. Though perhaps the bill does not (yet) get sent to
you! That card has a number, both printed on its face and embedded (perhaps with some other
data) in the magnetic stripe on back. That number is also stored in a database somewhere, so that
when your card is used to buy something, the creditor knows whom to bill. There are a lot of
people with credit cards in this world, so those numbers are pretty long: American Express uses
15-digit numbers, MasterCard uses 16-digit numbers, and Visa uses 13- and 16-digit numbers.
And those are decimal numbers (0 through 9), not binary, which means, for instance, that
American Express could print as many as 10" = 1,000,000,000,000,000 unique cards!’

Now that’s a bit of an exaggeration, because credit card numbers actually have some structure to
them. American Express numbers all start with 34 or 37; MasterCard numbers all start with 51,
52, 53, 54, or 55; and Visa numbers all start with 4. But credit card numbers also have a
“checksum” built into them, a mathematical relationship between at least one number and
others. That checksum enables computers (or humans who like math) to detect typos (e.g.,
transpositions), if not fraudulent numbers, without having to query a database, which can be slow.
(Consider the awkward silence you may have experienced at some point whilst paying by credit
card at a store whose computer uses a dial-up modem to verify your card.) Of course, a dishonest
mathematician could certainly craft a fake number that nonetheless respects the mathematical
constraint, so a database lookup is still necessary for more rigorous checks.

So what'’s the secret formula? Well, most cards use an algorithm invented by Hans Peter Luhn, a
nice fellow from IBM. According to Luhn’s algorithm, you can determine if a credit card number is
(syntactically) valid as follows:

i) Multiply every other digit by 2, starting with the number’s second-to-last digit, and then add
those products’ digits together.

ii) Add the sum to the sum of the digits that weren’t multiplied by 2.

iii)  If the total’s last digit is O (or, put more formally, if the total modulo 10 is congruent to 0),
the number is valid!

That’s kind of confusing, so let’s try an example with my own AmEx: 378282246310005.

i) For the sake of discussion, let’s first underline every other digit, starting with the number’s
second-to-last digit:

378282246310005

Okay, let’s multiply each of the underlined digits by 2:

72+2:2+2:2+42+32+02+0-2

s That’s, ahem, a quadrillion.

10<16



This is CS50.
Harvard College Fall 2011

That gives us:
14+4+4+8+6+0+0
Now let’s add those products’ digits (i.e., not the products themselves) together:
1+4+4+4+8+6+0+0=27

ii) Now let’s add that sum (27) to the sum of the digits that weren’t multiplied by 2:
27+3+8+8+2+6+1+0+5=60

iii)  Yup, the last digit in that sum (60) is a 0, so David’s card is legit!®

So, validating credit card numbers isn’t hard, but it does get a bit tedious by hand. Let’s write a
program.

In credit.c, write a program that prompts the user for a credit card number and then reports
(via printf) whether it is a valid American Express, MasterCard, or Visa card number, per the
definitions of each’s format herein. So that we can automate some tests of your code, we ask that
your program’s last line of output be AMEX\n or MASTERCARD\n or VISA\n or INVALID\n,
nothing more, nothing less. For simplicity, you may assume that the user’s input will be entirely
numeric (i.e., devoid of hyphens, as might be printed on an actual card). But do not assume that
the user’s input will fit in an int! Best to use GetLongLong from CS50’s library to get users’
input. (Why?)

Of course, to use GetLongLong, you'll need to tell gcc about CS50’s library. Be sure to put
#include <cs50.h>

toward the top of credit.c. And be sure to compile your code with a command like the below.
gcc -0 credit credit.c -1lcsb0

Note that -1cs50 must come at this command’s end because of how gcc works.

Incidentally, recall that make can invoke gcc for you and provide that flag for you, as via the
command below.

make credit

Assuming your program compiled without errors (or, ideally, warnings) via either command, run
your program with the command below.

./credit

6 Hm, maybe this wasn’t the best idea.

11<16



This is CS50.
Harvard College Fall 2011

Consider the below representative of how your own program should behave when passed a valid
credit card number (sans hyphens); highlighted in bold is some user’s input.

jharvard@appliance (~/hackerl): ./credit
Number: 378282246310005
AMEX

Of course, GetLongLong itself will reject hyphens (and more) anyway:

jharvard@appliance (~/hackerl): ./credit
Number: 3782-822-463-10005

Retry: foo

Retry: 378282246310005

AMEX

But it’s up to you to catch inputs that are not credit card numbers (e.g., my phone number), even
if numeric:

jharvard@appliance (~/hackerl): ./credit
Number: 6175230925
INVALID

Test out your program with a whole bunch of inputs, both valid and invalid. (We certainly will!)
Here are a few card numbers that PayPal recommends for testing:

https://www.paypalobjects.com/en US/vhelp/paypalmanager help/credit card numbers.htm

Google (or perhaps a roommate’s wallet) should turn up more.” If your program behaves
incorrectly on some inputs (or doesn’t compile at all), have fun debugging!

If you'd like to play with the staff’'s own implementation of credit in the appliance, you may
execute the below.

~csb0/hackerl/credit

7f your roommate asks what you’re doing, don’t mention us.

12<16



This is CS50.
Harvard College Fall 2011

| Saw You.

O

Surf on over to

http://isawyouharvard.com/

where you’ll find “your source for posting and browsing missed connections,” a website created
by CS50’s own Tej Toor ‘10 as her final project her year. Want to let someone special know that
you saw him or her the other day? Here’s your chance! We won’t know it’s you.8

Anyhow, once we have your attention again, follow the link to Statistics atop the site, where you’ll
find some neat visuals, among them a bar chart. As of the end of Week 1, here’s who is spotting
whom:

Who is Spotting Whom

It turns out it’s quite easy to integrate such things into a website these days. Tej happens to be
using the Google Chart API (a free library of sorts) to generate those visuals:

http://code.google.com/apis/chart/
If curious, documentation for bar charts specifically lives at:
http://code.google.com/apis/chart/image/docs/gallery/bar charts.html

We actually use a similar service, the Google Visualization API, for HarvardEnergy, a CS50 App with
which you can explore Harvard’s energy consumption and greenhouse effects:

http://energy.cs50.net/

Select your own dorm or house via the drop-down menus at top-left to see all sorts of interesting
data. Here’s what else you can do with that particular API:

http://code.google.com/apis/chart/interactive/docs/gallery.html

Suffice it to say, by term’s end, you’ll be empowered to implement ISawYouHarvard and
HarvardEnergy alike! For the moment, though, we’re confined to a command-line environment.
But not to worry, we can still do some pretty neat things. In fact, we can certainly generate bar

& or will we? Okay, we won’t.

13<16



This is CS50.
Harvard College Fall 2011

charts with “ASCII art,” even with vertical bars (as opposed to Tej’s horizontal ones). Let’s give it a
try.

Implement, in chart.c, a program that prompts a user for four non-negative integers (one for
each of M spotting F, F spotting M, F spotting F, and M spotting M), after which it should
generate a vertical bar chart depicting those values, with the first value’s bar on the left and the
fourth value’s bar on the right. You may assume that the user’s terminal window is at least 80
characters wide by 24 characters tall. (You might want to open a terminal window of your own,
separate from gedit, as via Menu > Programming > Terminal, so that you can see more output at
once.) Each bar should be represented as a vertical sequence of 0 or more pound signs (#), up to
a maximum of 20. The length of each bar should be proportional to the corresponding value and
relative to the four values’ sum. For instance, if the user inputs 10, 0, 0, and 0, the leftmost bar
should be 20 pound signs in height, since 10 is 100% of 10 + 0 + 0 + 0 = 10 and 100% of 20 is 20,
and the remaining three bars should be 0 pound signs in length. By contrast, if the user inputs 5,
5, 0, and 0, each of the left two bars should be 10 pound signs in height, since 5is 50% of 5+ 5 + 0
+ 0 = 10 and 50% of 20 is 10, and the rightmost two bars should be 0 pound signs in height.
Accordingly, if the user inputs 2, 2, 2, 2, each of the four bars should be 5 pound signs in length,
since 2is 25% of 2+ 2 + 2 +2 =8 and 25% of 20 is 5. And so forth. When computing proportions,
go ahead and round down to the nearest int (as by simply casting any floating-point values to
int’s). You needn’t worry about overflow; you can assume users’ inputs will be reasonably small.

Rather than label each bar on the left as Google does for horizontal bars, place abbreviated labels
(MA4F, FAM, F4F, and M4M) immediately below corresponding bar; each bar should be 3 pound
signs in width, with two white spaces separating each bar; and the leftmost bar should be flush
with the terminal window’s lefthand side. Consider the sample output below; assume that the
boldfaced text is what some user has typed.

jharvard@appliance (~/hackerl): ./chart
M spotting F: 3
F spotting M: 4
F spotting F: 1
M spotting M: 2

Who is Spotting Whom

4
iR
#HH
LA i
LA ki #HH
LA &k #HH

#HE HEE HHE HHA
LA A A 22 A i
M4F F4M F4F M4M

If you'd like to play with the staff’'s own implementation of chart in the appliance, you may
execute the below.

~csb0/hackerl/chart

14<16



This is CS50.
Harvard College Fall 2011

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.’

O

First, head to

https://www.cs50.net/me/
to find out which username and password you should use to submit in the following step.

Next, open a terminal window (as via Menu > Programming > Terminal or within gedit) then
execute:

cd ~/hackerl

Then execute:

1s

At @ minimum, you should see pennies.c, credit.c, and chart.c. If not, odds are you
skipped some step(s) earlier! If you do see those files, you are ready to submit your source code
to us. Execute:

submit50 ~/hackerl

When prompted for Course, input ¢s50; when prompted for Repository, input hackerl. When
prompted for a username and password, input the values vyou found at
https://www.cs50.net/me/. That command will essentially upload your entire ~/hackerl
directory to CS50’s repository, where your TF will be able to access it. The command will inform
you whether your submission was successful or not.

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk

rejection entirely.

If you run into any trouble at all, let us know via help.cs50.net and we'll try to assist! Just take
care to seek help well before the problem set’s deadline, as we can’t always reply within minutes!

Head to the URL below where a short form awaits:

http://www.cs50.net/psets/1/

If not already logged in, you’ll be prompted to log into the course’s website. Once you have
submitted that form (as well as your source code), you are done! This was Problem Set 1.

® This one’s much shorter than Problem Set 0's!

15<16



