
pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

pset5: Forensics

Tommy MacWilliam

tmacwilliam@cs50.net

October 16, 2011



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Today’s Music

I Kap Slap
I E.T. Feel Starry Eyed
I Remember the Collapse
I Till Silvia Saves the World
I All of the Nights



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Today

I file I/O
I bitmaps
I copy
I whodunit
I resize
I recover



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

File I/O

I files are just a sequence of bytes
I input: reading those bytes from a file
I output: writing some bytes to a file



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

File Position Indicator

I each file has an associated file position indicator:
where you are in the file

I reading/writing bytes will start from the current position
of the file position indicator

I after reading/writing bytes, file position indicator will
move forward



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Opening Files

I FILE *inptr = fopen(“clue.bmp”, “r”);
I open clue.bmp for reading

I FILE *outptr = fopen(“verdict.bmp”, “w”);
I open verdict.bmp for writing



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Reading Files

I fread(&data, size, number, inptr);
I &data: pointer to a struct, which will contain bytes of

file once fread finishes
I size: size of each element to read
I number: number of elements to read
I inptr: FILE * to read from

I fread(&data, sizeof(RGBTRIPLE), 2, inptr) and
fread(&data, 2 * sizeof(RGBTRIPLE), 1, inptr)
are equivalent



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Writing Files

I fwrite(&data, size, number, outptr);
I &data, size, number: same as before!
I outptr: FILE * pointer to write to

I fputc(data, outptr);
I data: char to write to the FILE * specified by outptr



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Seeking Files

I fseek(inptr, amount, from)
I inptr: FILE* to seek in
I amount: number of bytes to move cursor
I from:

I SEEK_SET (beginning of file)
I SEEK_END (end of file)
I SEEK_CUR (current position in file)



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

File I/O and Structs

I example time!
I io.c



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Bitmaps

I just like any file, a bitmap is just an arrangement of
bytes

I each color represented by 3 bytes (aka scales from
0-255)

I amount of blue
I amount of green
I amount of red



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Bitmap Colors

I 0000ff: no blue, no green, lots of red
I aka red

I 00ffff: no blue, lots of green, lots of red
I aka yellow

I 3c14dc: some blue, a little green, and a lot of red
I aka crimson



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

RGB Triples

I pixels are represented by RGBTRIPLE structs

// create a red triple
RGBTRIPLE triple;
triple.rgbtBlue = 0x00;
triple.rgbtGreen = 0x00;
triple.rgbtRed = 0xff;



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Padding

I size of each scanline must be a multiple of 4 bytes
(recall each pixel is 3 bytes)

I if number of pixels per line × 3 is not a multiple of 4, we
need padding

I where padding is just 0s to make the number of bytes
be a multiple of 4



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Padding Examples

I padding = (4 − (width × sizeof (BYTE))%4)%4

width sizeof(BYTE) padding
1 3 1
2 3 2
3 3 3
4 3 0
5 3 1



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Header



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Header

I biSizeImage: total size of image (in bytes), including
pixels and padding

I biWidth: width of image (in pixels), not including
padding

I biHeight: height of image (in pixels)



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Header

I BITMAPFILEHEADER and BITMAPINFOHEADER are structs
defined in bmp.h

I create using BITMAPFILEHEADER bf;
I read data into the struct with fread(&bf, ...);



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

xxd

I xxd -c 24 -g 3 -s 54 smiley.bmp
I display 3 bytes at a time, starting from the 54th byte, in

8 columns per line



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

copy.c

I example time!



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

whodunit

I goal: change unreadable grid of red, white, and blue
pixels into a readable grid

I multiple ways to do this!



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open file
2. read each scanline, pixel by pixel
3. change color of pixels in scanline
4. write scanline, pixel by pixel



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

copy.c

I start with copy.c
I opening file, reading pixels, and writing pixels is already

done!



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open file
2. read each scanline, pixel by pixel
3. change color of pixels in scanline
4. write scanline, pixel by pixel



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Changing Colors

I current arrangement of colors is unreadable, so change
some colors!

I create a filter: only let red through by cranking down all
blue and green in all pixels

I good thing we can change red, blue, and green
independently



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open file
2. read each scanline, pixel by pixel
3. change color of pixels in scanline
4. write scanline, pixel by pixel



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

resize

I goal: rather than copy image, scale image up by a
factor of n

I ./resize 5 smiley.bmp
I each pixel needs to be repeated to create 5 pixels
I each row needs to be repeated to create 5 rows



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Resizing

I ./resize 2 small.bmp large.bmp



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open file
2. update header info
3. read each scanline, pixel by pixel
4. write each pixel n times
5. write each line n times



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Headers

I new image means new header info!
I file size, image size, width, and height must change
I need to change both structs!



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open file
2. update header info
3. read each scanline, pixel by pixel
4. write each pixel n times
5. write each line n times



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Resizing Horizontally

I copy.c reads in a single pixel, then writes a single pixel
I instead, we want to read a single pixel, then write that

pixel multiple times
I good thing we stored that pixel in a variable!
I loops anyone?



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Padding

I old image and new image might have different padding
I need to recalculate, good thing we have a formula

I when reading, need to use original padding
I remember, padding isn’t an RGBTRIPLE, so we can’t try

to fread padding

I when writing, need to use newly calculated padding
I else we write the wrong amount of padding, and our

image fails :\



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open file
2. update header info
3. read each scanline, pixel by pixel
4. write each pixel n times
5. write each line n times



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Resizing Vertically

I now, we need to write each line n − 1 more times
I but, copy forgets each pixel as soon as it writes it

I remember pixels in an array
I each element in array can be a single RGBTRIPLE
I write array block by block, or all at once

I use fseek
I write a line, fseek back to the beginning of the line, and

repeat



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Variable-Sized Arrays

int n = 5;
int array1[n];
int array2 = malloc(n * sizeof(int));
// FREEING ARRAYS IS SERIOUS BUSINESS
free(array2);



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open file
2. update header info
3. read each scanline, pixel by pixel
4. write each pixel n times
5. write each line n times



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

recover

I goal: recover 37 images from a corrupt CF card
I someone needs to teach David computers



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

card.raw



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open card.raw

2. determine start of new image
3. determine filename
4. write all bytes of image to the same file



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

card.raw

I located in /home/cs50/pset5/card.raw
I hard-code this value, no need for command-line parsing

I #define, ahem



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open card.raw

2. determine start of new image
3. determine filename
4. write all bytes of image to the same file



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

JPEGs

I JPEGs are still just a sequence of bytes
I start with either:

I 0xff 0xd8 0xff 0xe0
I 0xff 0xd8 0xff 0xe1

I stored contiguously on the CF card



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

card.raw

0xff 0xd8 0xff 0xd8 0xff 0xd8

0xff 0xe0 0xff 0xe1 0xff 0xe0



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open card.raw

2. determine start of new image
3. determine filename
4. write all bytes of image to the same file



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

sprintf

I printf writes to standard output, sprintf writes to a
char *

I sprintf(array, “coolness: %d”, 10);
I filenames must be in the form ###.jpg

I good thing that’s always the same number of
characters!

I JPEGs named in the order you find them, starting at
000



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open card.raw

2. determine start of new image
3. determine filename
4. write all bytes of image to the same file



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Blocks

I JPEGs organized into 512-byte blocks
I read file 512 bytes at a time instead of 3 bytes (aka 1

BMP pixel)



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Reading Blocks

I we can also fread into arrays
I arrays and structs are both contiguous in memory

BYTE array[5];
fread(array, sizeof(BYTE), 5, inptr);



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Writing Blocks

I once we find an image, we can fwrite into the same
file until we find the start of another image

I then, we need to start fwrite-ing into the next file
I don’t forget to fwrite the block containing the start

sequence



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

Finishing Up

I feof(inptr)
I returns a boolean: have we reached the end of a file?
I don’t know how many bytes the card is, so loop until

entire file is read



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

TODO

1. open card.raw

2. determine start of new image
3. determine filename
4. write all bytes of image to the same file



pset5:
Forensics

Tommy
MacWilliam

File I/O

Bitmaps

Copy

whodunit

resize

recover

One More Thing

“Yesterday my sister accidentally formatted her camera’s SD
card and lost a year’s worth of memorable photos. (She
unfortunately isn’t the best at backing up her data.) This
situation reminded me of Pset-5 so I thought I would try to
run her SD card through the "recover.c" program I wrote all
the way back in October. So after 4 hours of figuring out
how to create a .raw image from the formatted the SD card
and installing/configuring the CS 50 Virtual Box, I managed
to run the forensic image through my program and
recover all 1027 of my sister’s photos.”


	File I/O
	Bitmaps
	Copy
	whodunit
	resize
	recover

