This is Week 3

Jason Hirschhorn
Fall, 2011

Agenda

CS50 Resources

Review

* Problem Set 1
* Arrays

* GDB

Running Time

* Asymptotic Notation
Search & Sort

* Linear; Binary

* Bubble; Selection

Recursion
e Call Stack

CS50 Resources

* Problem Set 3 Walkthrough (Sun, 7pm, NW Labs B103) —
https://www.cs50.net/psets/

» Office Hours — https://www.cs50.net/ohs/

* Lecture videos, slides, source code, Scribe Notes —
https://www.cs50.net/lectures/

* Bulletin Board — http://help.cs50.net
* Me — jchirschhorn@gmail.com

* Problem Set feedback and scores
* pset0 —all ready sent out!
* psetl —Monday
* pset2 — Friday

* We’re here to help you. Plus...

CS50 Lecture

Posted at 2011-09-23 21:02:29, F spotting M

| saw you... CS50 Head TF. You're cute. Hope you're still single next

semester!

Review

psetl — Correctness

* Check for invalid inputs
if(argc = 2)
{
printf(“Enter a key.\n”);
return 1;

¥

* Check for corner cases
* Zero
* Negatives
* Characters instead of numbers

psetl - Design

* Make it easy on yourself! Don’t do unnecessary work
* Don’t check conditions you know are true

if(x == 5) { // do this }

else if(x !'=5) { // or this}
* Don’t create extra variables

* Bad
int y = X + 3;
int z =y % 4;

* Good

int result = (x + 3) % 4;

psetl - Design

* Ask yourself, “Is there another way | can solve this problem
more efficiently?”

* Problems have many right answers but only a few good ones

* So, develop a problem-solving strategy
* Focus on one task at a time

Solve the problem in English

Write the pseudo-code

Translate it into C
Try it
Repeat for the next task

Arrays

* A set of elements of the same type
* Each element is accessed with an index value

Quick Quiz

* ./ohal ¢s50 section pals
What is argc?

What is argv[0]?

What is argv[1][2]?

What is argv[3][4]?

Arrays

* “Passed by reference” (not by value)
* Pass the location where the original copy is stored

* We tell a function where to find the start
int numbers[3] = {4, 5, 6};
int s = sum(numbers);
* E.g. mailing address vs. contents of the mailbox

Sum.c

* Concepts to practice — function calls, arrays
#include <stdio.h>

// sums the numbers in a given array
int sum(int array_size, int numbers[]);

int

main(void)

{
// initialize an array of 5 numbers
// call the sum function
// print the result

GDB

GDB

GNU Debugger
Allows you to walk through your program step by step

* Pause at any step and find out what everything equals
* Way more powerful than printf*

To start, type gdb <program name> in terminal

Let’s check out how to walk through a program, gdbexample.c

*Nevertheless, have | always used printf instead? Yes, yes | have.

Useful Commands

run <optional command line args>
* Run the loaded program
* break <function name or line number>
* Create a breakpoint (where the program will)
* step
* Execute the next line of code (enter a function)
* next
* Execute the next line of code (w/o entering a function)
* continue
* Go to the next breakpoint
- list
* List the source code around the current line
* print <variable name>
* Display the value of a variable

Running Time

Running time

* How long it takes an algorithm to run
* Not in terms of (nano)seconds
* That would vary by computer

* In terms of “steps”

Why?
* One algorithm may solve a problem faster than another
* As the size of the problem increases, it may solve it way faster

* Asymptotic notation allows us to represent and compare
these running times

Asymptotic Notation

* 0
° IlBig OII
* Worst case running time (upper bound)

* Most important to look at when classifying the speed of an
algorithm

* Q

* “Omega”

* Best case running time (lower bound)
° 0

* “Theta”

* Average case running time (upper and lower bound combined)

Asymptotic Notation

* O(1) — constant
* O(log n) —logarithmic
* O(n) —linear
* O(n?) — quadratic
* O(n®) — polynomial
* O(c") — exponential
* O(n!) — factorial

* O(n) = O(kn), where k | ————

is a constant Steps
* O(n¢ + nk) = O(n¢) ==L ogarithmic==Linear
where ¢ > k Quadratic

Running Time

Efficiency Matters

Quick Quiz
* What’s wrong with this code?
for(int 1 = 9; i < strlen(word); i++)

{
printf(“%c\n”, word[i]);

* Design decisions like this one matter in terms of how
efficiently your code runs

* Complexity is the same way

Search & Sort

Linear Search

Method

* lterate through each element in a list until we find the one we
want

* List may or may not be sorted
Big O
* O(n), Q(1)

MM Mr

11315791113

Binary Search

Method (must have sorted list)
* Start in the middle
* If this is the right number
* All done!
* Else if too high
* Divide in half

* lgnore right half

(WY

* Repeat on left half

(08

(o))

~

* Else if too low

* Divide in half

* lgnore left half

* Repeat on the right half
Big O
* O(logn), Q1)

Bubble Sort

Method
* If adjacent elements are out of place, swap them
* Keep going through the list until no swaps are made

Big O

* 0O(n?), Q(n) 71311109 31711109
- \V,
31711109 3117109
- = v,
311|709 719

Selection Sort

Method
* Find the smallest element and swap it with the first element

* Find the next smallest element and swap it with the second
element

* Repeat until the end of the list
Big O

. O(nz) Q(nz) 719 1 3 119 71 3
’ - =) m) \J
1 9 7| 3 1 3 719

Recursion

Recursion

* A function that calls itself

* Base case
* When the function should stop calling itself
* Stops the function from calling itself forever

* Recursive call
* When the function calls itself again

Recursion Example

int
length(char *word, int n)
{
if(word[n] != “\@°) T
return 1 + Recursive call
length(word, n + 1);

| |

else

return @; Base case

Recursion Example

Recursive Non-Recursive
int int
length(char *word, int n) length(char *word, int n)
{ {
if(word[n] != “\©’) while(word[n] != “\@’)
return 1 + N++;

length(word, n + 1);
return n;
else }
return 0;

Call Stack

Every function gets its own space in memory (“frame”)
When a function is called, it creates a new frame

Frames stack on top of each other

Top frame = active frame
* After it finishes it disappears

* The frame below it becomes active function3()

function1()

main()

Factorial.c

* Concepts to practice — command line arguments, validating input, function calls,
recursion

#include <stdio.h>
#include <stdlib.h>

// finds the factorial of a given number
long long factorial(long long n);

int

main(int argc, char *argv[])

{
// validate user input
// call the factorial function
// print the result

That was Week 3

http://www.youtube.com/watch?v=zIfKdbWwruY

