This is Week 4

Jason Hirschhorn
Fall, 2011




Agenda

* Resources + Announcements
* Review

* Problem Set 2
* Memory, Part 1

* Hexadecimal numbers
* Stack

* Pointers

* Memory, Part 2
* Heap
* Dynamic memory allocation
* Arrays

* Merge Sort




Resources + Announcements

* Problem Set 4 Walkthrough (Sun, 7pm, NW B103) —
https://www.cs50.net/psets/

» Office Hours — https://www.cs50.net/ohs/

* Lecture videos, slides, source code, scribe notes —
https://www.cs50.net/lectures/

* Bulletin Board — http://help.cs50.net
* Problem Set feedback and scores

* psetl, pset2 — all ready sent out!
* pset3 — Thursday

* Quiz 0 (Wed, 10/12) — https://www.cs50.net/quizzes/




Review




pset2 - Correctness

* Make sure your code compiles

* Run a fresh make of each program before you submit
* Make sure your code works properly

* Compare its results to the staff solution’s results

* Check corner cases




pset2 - Style
* Block comments at the beginning of each file

/*
* caesar.c
3

* Computer Science 50
* Jason Hirschhorn

* Encrypts a phrase using a Caesar cipher.
*/




pset2 - Style

int main(int argc, char *argv[])

{

Appropriately detailed
// validates user input inline comments
if(argc 1= 2)
return 1;

// creates variables to store name and length
char *name = argv[1];
int length = strlen(name);

// ensures each character is a valid letter
for(int i = @; i < length; i++)
{
if(!isalpha(name[i])
return 1;

Self-explanatory variable names
(smaller scope = shorter name)




Memory, Part 1




Memory

* Code and data for your program are stored in random-access
memory (RAM)

* Memory is a huge array of 1 byte (8 bits) blocks
* Each block has a numerical address

* We use hexadecimal numbers to concisely represent the
memory addresses of these blocks




Hexadecimal Numbers

* Hexadecimal = numbers are in base 16

° 0to9then AtoF

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
8 9 A B C D E F




Hexadecimal Numbers

* Every set of 4 bits (a “nibble,” or half a “byte”) can be
represented by 1 hex digit

* To signal that we’re using hexadecimal, we start with “Ox”

8s 4s 2s 1s 8s 4s 2s 1s

1 0 0 1 1 1 1 0
0x9 OxE

8s 4s 2s 1s 8s 4s 2s 1s

0 1 1 1 110 1|0

Ox7 OxA




Stack

* A part of memory functionl creates
* Need to store something? int num = 5;
Put it on top string name = “cs50”;

* Done with something? char x = ‘a’;

Take it off
* Each function that’s
called gets its own block
* “Frame”
* It puts the variables it X
creates in its frame name
* When a function returns,
its frame becomes main()
inaccessible

function2()

function1()

num




Pointers




Pointers

* Data stored in memory has both a value and an address
* A pointer is a special type of variable

* Its value is an address
* How big is a pointer?

* Every memory address is 4 bytes (32 bits)

* So a pointer is also 4 bytes

* No matter what type it is

Quick Quiz
* What are the following hexadecimal numbers?
8s 4s 2s 1s 8s 4s 2s 1s 8s 4s 2s 1s

111101 O[1]|0]|1 11011




Using Pointers

* <type>* <variable name> declares a pointer
* |t will hold an address, not a value

* &<variable name> gets the address of a variable

* *<variable name> goes to the address stored in the
variable and gets its value

int x = 5;
int* v = &x;
int = *y; Ox9F

0x




Examples

char m = ‘A’;
char* n = &m;

* What is m? What is n?

* If lwant char ptobe ‘A,
what two things can | set it
equal to?

int x = 13;
int* y = &x;
*y = (Yy) * 25

* What is x?
* What isy?

int a =3, b=4, c =
55

int *pa
&b, *pc

&a, *pb =
&c;

* What happens after each
statement?




Practice Problems

* address.c
* Concepts to practice — pointers
* pointers.c
* Concepts to practice — pointers (these take a ton of practice)




MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

0x3A28213A

Ox6339292C,

Ox 7363632E.
| HATE YOU.

Y




Memory, Part 2




Heap

Sometimes we want our variables to stay in memory after a
function returns

* Remember, local variables are stored in the stack
 Stack frames go away after a function returns
* So, we can store these variables on the heap
* Another part of memory
* Separate from the stack

Data on the heap won’t get overwritten
* We get to choose when it gets created and destroyed

However, we have to explicitly reserve this memory




Dynamic Memory Allocation

Requesting memory on the fly

void* malloc(int <number of bytes>)
* Reserves a block of memory on the heap
* Returns the address of this block

sizeof(<data type>)
* Returns the number of bytes a given type occupies

void free(void* <name of pointer>)
* Frees up the reserved memory

Quick Quiz
* How many bytes isan int? A char? An int*? A char*?




Dynamic Memory Allocation

// reserves enough space to store 10 chars
char* x = malloc(sizeof(char) * 10);

// frees this reserved block
free(x);




Stack vs. Heap

* Contains global variables Heap
* Dynamically allocated memory J
. . N
e Contains local variables
* Function calls create new frames
Stack




Heap.c

* Concepts to practice — pointers, dynamic memory allocation,
the heap

* When using malloc, always remember to...
* Check whether it returns null
* Free the allocated memory exactly once

* Compare to stack.c




Pointer Arithmetic

Adding an integer n to a pointer shifts the pointer over

Shift = n * sizeof(<type of pointer>) bytes
The address of x is 0x04
int x;
int* y = &; // y has the value 0x04
y += 1; // y has the value 0x08
Why?

Quick Quiz

* The address of x is OXAA
char Xx;
char* y = &x; // what is the value of y?
y += 1; // what about now?




Arrays

* Arrays are pointers!

char array[4];
F 0] P 3
array[O] array[1] array[2] array[3]

*array *(array + 1)

*(array + 2)

*(array + 3)




Array.c

* Concepts to practice — command line arguments, dynamic memory allocation,
pointers, pointer arithmetic

// counts up to a given number
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char* argv[])
{
// ensure user enters an integer greater than ©
// use malloc to initialize a new array of size = argv[1l]
/* use pointer arithmetic to store integers
starting at 0 */
// use index notation to add 1 to each element
// print each element of final array




Merge Sort




Merge Sort

* Yet another sorting algorithm
* Like bubble sort and selection sort, but way better!

Method
* If the list is length O or 1, it is already sorted

* Else divide the unsorted list into two halves
* Sort each half
* Merge the two halves into one sorted list
Compare first element of each half

Put lowest overall in front of new sorted list
Keep moving down each half until one runs out




Merge Sort

Unsorted list

Base cases

Sorted list

3812743 |3|9(82(10
38|27 |43 |3 9(82 (10
38 27]/ 43 | 3 9 (82 10
o N LN
38 27 43 3 9 82 10
27 | 38 3143 9 (82 10
3127 (38|43 9 (10 (82
3({9(10(27 |38 (43|82




Running Time

Big O

* O(n log n)

* Breaking a list in half and rebuilding it = O(log n)
* Sorting each half = O(n)




That was Week 4

http://xkcd.com/179/




