
Getting Started with
node.js

Beardsley (“B”) Ruml
b@ruml.com

http://ruml.com

1Sunday, November 20, 2011

mailto:b@ruml.com
mailto:b@ruml.com
http://ruml.com
http://ruml.com

probably the most
exciting new idea

since Ruby on Rails
in 2004

2Sunday, November 20, 2011

node.js
2009

Ryan Dahl

3Sunday, November 20, 2011

What is node.js?

4Sunday, November 20, 2011

What is node.js?
a program execution environment for JS

4Sunday, November 20, 2011

A browser is
a program execution environment for JS

5Sunday, November 20, 2011

The Chrome browser is
a program execution environment for JS

6Sunday, November 20, 2011

node.js is
a program execution environment for JS

with access to the local filesystem
7Sunday, November 20, 2011

What is node.js?
a program execution environment for JS

with event-driven, non-blocking I/O

8Sunday, November 20, 2011

event-driven:
On launch, the program sits in an

event-loop waiting for GUI events to
occur; when they do, each event is

placed at the end of an event-queue.

9Sunday, November 20, 2011

event-driven(2):
The program removes each event from
the head of the queue and “handles” it

by invoking the event-handler
functions which have been bound to

the event.

10Sunday, November 20, 2011

“event-handler”
==

“callback”

The program “calls back”
when the event occurs.

11Sunday, November 20, 2011

non-blocking I/O:
When input is requested (e.g.,

disk-access), the program
doesn’t wait for the data from

disk. It continues on with
“something else.”

12Sunday, November 20, 2011

non-blocking I/O:
The code to be executed when the disk
data is finally available is placed in a
“callback function” and that function

is invoked when the data-available
event occurs.

13Sunday, November 20, 2011

What is node.js?
a program execution environment for JS

with event-driven, non-blocking I/O
written in C++ and incorporating

Google’s V8 JavaScript engine

[also a set of core modules]

14Sunday, November 20, 2011

Why is it so fast as a
network server?

In CGI, each request spawns a new thread with a
separate instance of the application: new

interpreter, new initializaton, etc.

In node.js, each request triggers a callback
within a single thread (small heap memory
allocation)which provides an environment

which can save state.

15Sunday, November 20, 2011

Why is node.js “the future”
of web applications?

Web evolution:

• a series of linked static pages;
• pages which were dynamically generated from a

database (templating);
• pages which send significant amounts of new

data and can ask for updates for parts of a page
without refreshing the page (Ajax);
• pages which need constant communication;

updates without asking; many browsers talking
to each other (chat, backchannel);

16Sunday, November 20, 2011

node.js core modules
http
net
child_process
fs
os

sys
url
util
. . .

17Sunday, November 20, 2011

require(<module>)

var http = require("http");

[convention: use the same name as module]

18Sunday, November 20, 2011

a web server in node:

19Sunday, November 20, 2011

a web server in node:

19Sunday, November 20, 2011

a web server in node:

19Sunday, November 20, 2011

what does the call to
createServer() do?

20Sunday, November 20, 2011

what does the call to
createServer() do?

It binds the event-handler function
(passed as the parameter) with the

incoming-HTTP-request event.

20Sunday, November 20, 2011

a web server in node:

but we can chain our calls!

21Sunday, November 20, 2011

a web server in node:

22Sunday, November 20, 2011

a web server in node:

what’s wrong here?

22Sunday, November 20, 2011

a web server in node:

23Sunday, November 20, 2011

the serverResponse object:

24Sunday, November 20, 2011

the serverRequest object:

25Sunday, November 20, 2011

let’s log the requests:

26Sunday, November 20, 2011

let’s log the requests:

27Sunday, November 20, 2011

let’s serve a static file:

28Sunday, November 20, 2011

let’s serve a static file:

29Sunday, November 20, 2011

let’s serve a static file:

30Sunday, November 20, 2011

Web App Framework:
Express

31Sunday, November 20, 2011

A Chat Application

(the “demo app” of node.js)

32Sunday, November 20, 2011

How does chat work?

Joe, Sue and Bob all go to the same URL.
They navigate to the same “chat room.”

33Sunday, November 20, 2011

How does chat work?

34Sunday, November 20, 2011

How does chat work?
1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

34Sunday, November 20, 2011

How does chat work?

2. When a new person enters (or leaves) the
room, everyone else is notified.

1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

34Sunday, November 20, 2011

How does chat work?

2. When a new person enters (or leaves) the
room, everyone else is notified.

3. The newcomer is sent the most recent
messages.

1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

34Sunday, November 20, 2011

This isn’t typical client-server!

This requires a:
 permanently-open
 bidirectional
channel.

35Sunday, November 20, 2011

Before HTML5: hacks!

long polling
flash

36Sunday, November 20, 2011

After HTML5:

websockets!

(a
 permanently-open
 bidirectional
 channel)

37Sunday, November 20, 2011

websockets for node.js:

socket.io!

5 different transports
(including long polling and flash)

38Sunday, November 20, 2011

JavaScript object syntax:

{
 firstName: “John”,
 lastName: “Brown”,
 age: 23,
 children: [“Sue”, “Bob”],
 birthdate: [1994, 12, 25]
}

39Sunday, November 20, 2011

back to the chat app:

What messages do we need to send?

40Sunday, November 20, 2011

What messages do we need to send?
1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

Message from the sender’s browser:
<body>

{ message: [<author>, <body>] }
Message from the server to others:

41Sunday, November 20, 2011

What messages do we need to send?

Message from the server to others:

2. When a new person enters (or leaves) the
room, everyone else is notified.

{ announcement: <text> }

42Sunday, November 20, 2011

What messages do we need to send?

Message from the server to newcomer:

3. The newcomer is sent the most recent
messages.

{ buffer: [<msg>, <msg>, ...] }

43Sunday, November 20, 2011

Chat app messages summary:

{ buffer: [<msg>, <msg>, ...] }

{ announcement: <text> }

{ message: [<author>, <body>] }

Messages from the server:

Messages from the browser:
<body>

44Sunday, November 20, 2011

What has to happen on the server?
1. Listen for attempts to connect.

2. When a connection occurs:
 - create a client object and assign an ID;
 - bind event-handlers to the events of the
 client: 1) receipt-of-a-message and
 2) disconnecton
3. The message event-handler needs to:
 - add the client’s ID as author;
 - package author and body into a message
 object;
 - sent the message object to everyone else.

45Sunday, November 20, 2011

Let’s look at the server code:

46Sunday, November 20, 2011

What has to happen on the browser?
1. Create a socket object and send a connection
 request to the server.

2. Bind event-handler to receipt-of-message event.

3. The message event-handler needs to:
 - for buffer objects: add to chat window in a
 loop;
 - otherwise just add to chat window.

47Sunday, November 20, 2011

Let’s look at the browser code:

48Sunday, November 20, 2011

backchannel

A variation on chat: posts (typically questions
for a lecturer) are voted on by all and can be
displayed in order of popularity.

http://github.com/bruml2/backchannel

49Sunday, November 20, 2011

http://github.com/bruml2/backchannel
http://github.com/bruml2/backchannel

node.js installation
http://nodejs.org

50Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js documentation
http://nodejs.org/docs/v0.6.2/api/all.html

51Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js directory
nodecloud.org

52Sunday, November 20, 2011

node.js tutorials
The Node Beginner Book
http://nodebeginner.org

53Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js tutorials
Mastering Node

http://visionmedia.github.com/masteringnode/
book.html

54Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js tutorials
Node Tuts screencasts
http://nodetuts.com

55Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js tutorials
How To Node

http://howtonode.org

56Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js books
Node.js in Action (Manning)

57Sunday, November 20, 2011

node.js books
Hands-on node.js

60 pages (of 118) free
http://nodetuts.com

58Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js books
Node Web Development (Packt)

not so good!

59Sunday, November 20, 2011

node.js Hosting
Joyent (no.de)

Nodejitsu
Nodester
Heroku

easy; cheap;

60Sunday, November 20, 2011

Thanks for listening!

61Sunday, November 20, 2011

