Getting Started with
node.js

Beardsley (“B”) Ruml

bdruml.com
http://ruml.com

mailto:b@ruml.com
mailto:b@ruml.com
http://ruml.com
http://ruml.com

probably the most

exciting new idea

since Ruby on Rails
in 2004

node.js
2009

Ryan Dahl

What is node.js?

What is node.js?

a program execution environment for JS

A browser 1is

a program execution environment for JS

Any browser

Some J3 Engine HTTP over a network

£\

|

Sunday, November 20, 2011

The Chrome browser is

a program execution environment for JS

Chrowe browser

HTTP over a network
Output l T Input /H\ @

node.js is

a program execution environment for JS

HTTP over local
a network filesystem

with access to the local filesystem

Sunday, November 20, 2011

What is node.js?

a program execution environment for JS

with event-driven, non-blocking I/O

event-driven:

On launch, the program sits in an
event-loop waiting for GUI events to
occur; when they do, each event is
placed at the end of an event-queue.

event-driven(2):

The program removes each event from
the head of the queue and “handles” it
by invoking the event-handler
functions which have been bound to
the event.

“event-handler”

“callback”

The program “calls back”
when the event occurs.

non-blocking I/O:

When input is requested (e.g.,
disk-access), the program
doesn’t wait for the data from
disk. It continues on with
“something else.”

non-blocking I/O:

The code to be executed when the disk
data is finally available is placed in a
“callback function” and that function

is invoked when the data-available
event occurs.

What is node.js?

a program execution environment for JS

with event-driven, non-blocking I/O

written in C++ and incorporating
Google’s V8 JavaScript engine

|also a set of core modules]

Why is it so fast as a
network server?

In CGI, each request spawns a new thread with a
separate instance of the application: new
interpreter, new initializaton, etc.

In node.js, each request triggers a callback

within a single thread (small heap memory

allocation)which provides an environment
which can save state.

Sunday, November 20, 2011

Why is node.js “the future”
of web applications?

Web evolution:

® a series of linked static pages;

® pages which were dynamically generated from a
database (templating);

® pages which send significant amounts of new
data and can ask for updates for parts of a page
without refreshing the page (Ajax);

® pages which need constant communication;
updates without asking; many browsers talking
to each other (chat, backchannel);

Sunday, November 20, 2011

node.js core modules

http SYyS
net url

child_process util
fs

0S

require(<module>)

var http = require ("http");

[convention: use the same name as module]

a web server in node:

var http = require('http');

server = http.createServer(function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');

}) s

server.listen(1337);
console.log('Server running on port 1337'");

Sunday, November 20, 2011

a web server in node:

var http = require('http');

server = http.createServer(function (request, response) {

response.writeHead (200, {'Content-Type': 'text/plain'});
response.end('Hello World\n');

}) s

server.listen(1337);
console.log('Server running on port 1337'");

ruml@TheBoss-784 code!$ node helloWorldServer. s
Server running on port 1337

Sunday, November 20, 2011

a web server in node:

var http = require('http');

server = http.createServer(function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});
response.end('Hello World\n');

}) s

server.listen(1337);

console.log('Server running on port 1337'");

ruml code ' 5 node helloWorldServer.js
Server running on port 1337

- | localhost:1337
Most Visited ~ -" Coogle Maps | | Readability

Hello Worla

Sunday, November 20, 2011 19

what does the call to
createServer() do?

server = http.createServer (function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end ('Hello World\n');

});

Sunday, November 20, 2011

what does the call to
createServer() do?

server = http.createServer (function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end ('Hello World\n');

});

It binds the event-handler function
(passed as the parameter) with the
incoming-HTTP-request event.

a web server in node:

var http = require('http');

server = http.createServer(function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');

});

server.listen(1337);
console.log('Server running on port 1337'");

but we can chain our calls!

Sunday, November 20, 2011

a web server in node:

var http = require('http');

server = http.createServer(function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');
}) .1listen (1337);
console.log('Server running on port 1337");

Sunday, November 20, 2011

a web server in node:

var http = require('http');

server = http.createServer(function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');
}) .1listen (1337);
console.log('Server running on port 1337");

what’s wrong here?

Sunday, November 20, 2011

a web server in node:

var http = require('http');

server = http.createServer (function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');
}) .1listen (1337, function() {
console.log('Server running on port 1337');

});

Sunday, November 20, 2011

the serverResponse object:

var http = require('http');

server = http.createServer (function (request, response) {
response.writeHead (200, {'Content-Type': 'text/plain'});

response.end('Hello World\n');
}) .1listen (1337, function() {
console.log('Server running on port 1337');

});

Sunday, November 20, 2011

the serverRequest object:

request.method
request.url
request.headers
request.trailers

request.httpVersion
request.setEncoding(encoding=null

request.pausel()
request.resume()
request.connection

Sunday, November 20, 2011

let’s log the requests:

var http = require('http');

function logRequest (request) {
console.log("REQUEST: " + request.method + " HTTP " +
request.httpVersion + " " + request.url);

console.dir (request.headers) ;

}

server = http.createServer (function (request, response) {
logRequest (request) ;
response.writeHead (200, {'Content-Type': 'text/plain'});
response.end('Hello World\n');

}) .listen (1337, function() {
console.log('Server running on port 1337');

});

Sunday, November 20, 2011 26

let’s log the requests:

AC[ruml code 5 node helloWorldServer.is
Server running on port 1337
REQUEST: GET HTTP 1.1 /
{ host: 'localhost:1337',
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X
accept: 'text/html,application/xhtml+xml,application/

'accept-lanquage': 'en-us,en;g=0.5",
'accept-encoding': 'gzip, deflate’,
'accept-charset': 'ISO-8859-1,utf-8;9=0.7,*;g=0.7",
connection: 'keep-alive',

'cache-control': 'max-age=0' }

Sunday, November 20, 2011

let’s serve a static file:

var http require('http');
var fs require('fs') ;

server = http.createServer (function (request, response) ({
fs.readFile('./home.html', function(err, data) {

response.writeHead (200, {'Content-Type': 'text/html'});
response.end(data) ;

});
}) .1listen (1337, function() {

console.log('Server running on port 1337');

});

Sunday, November 20, 2011

let’s serve a static file:

<html>
<head>
<title>Getting Started with node.js</title>
</head>
<body>
<div id="container"

style="margin: 2em;

border: 2px solid blue;
padding: 2em;
text-align: center;">
Getting Started with node. s
</div>
</body>
</html>

Sunday, November 20, 2011

let’s serve a static file:

< | localhost:1337 v | (8~ Google Q) ||| # |~

Most Visited ¥ ~4 Google Maps | | Readability » [EJ Bookmarks ~

Getting Started with node. js

Sunday, November 20, 2011

Web App Framework:
Express

var app = require ("express") .createServer();

app.get('/', function(req, res) {

res.send('Hello World');
});

app.listen (3000);

Sunday, November 20, 2011

A Chat Application

(the “demo app” of node.js)

How does chat work?

Joe, Sue and Bob all go to the same URL.
They navigate to the same “chat room.”

How does chat work?

How does chat work?

1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

How does chat work?

1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

2. When a new person enters (or leaves) the
room, everyone else is notified.

How does chat work?

1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

2. When a new person enters (or leaves) the
room, everyone else is notified.

3. The newcomer is sent the most recent
messages.

Sunday, November 20, 2011

This 1sn’t typical client-server!

This requires a:
permanently-open
bidirectional

channel.

Before HTTML5: hacks!

long polling
flash

After HTMLS5:

websockets!

(a

permanently-open
bidirectional
channel)

websockets for node.js:

socket.10!

5 different transports
(including long polling and flash)

JavaScript object syntax:

firstName: “John”,
lastName: "“"Brown”,

age: 23,

children: [“Sue”, “Bob”],
birthdate: [1994, 12, 25]

back to the chat app:

What messages do we need to send?

What messages do we need to send?

1. When anyone sends a message, the sender’s
ID and the message are displayed in the
browsers of all. (In the sender’s browser, the
sender is “you.”)

Message from the sender’s browser:

<body>

Message from the server to others:
{ message: [<author>, <body>] }

What messages do we need to send?

2. When a new person enters (or leaves) the
room, everyone else is notified.

Message from the server to others:

{ announcement: <text> }

What messages do we need to send?

3. The newcomer 1s sent the most recent
messages.

Message from the server to newcomer:
{ buffer: [<msg>, <msg>, ...] }

Chat app messages summary:

Messages from the browser:

<body>

Messages from the server:

{ buffer: [<msg>, <msg>, ...] }

{ announcement: <text> }

{ message: [<author>, <body>] }

What has to happen on the server?

1. Listen for attempts to connect.

2. When a connection occurs:
- create a client object and assign an ID;
- bind event-handlers to the events of the
client: 1) receipt-of-a-message and
2) disconnecton

3. The message event-handler needs to:
- add the client’s ID as author;
- package author and body into a message
object;
- sent the message object to everyone else.

Sunday, November 20, 2011

Let’s look at the server code:

var serverlistener = require('socket.io').listen(server);
var buffer = [];

serverListener.on('connection’', function(client) {
// send the buffer to this client;
client.send({ buffer: buffer });
// send an announcement to all other clients;
client.broadcast({ announcement: '=> ' + client.sessionlId + ' connected' });

client.on('message’', function(message) {

var msg = { message: [client.sessionlId, message] };
buffer.push (msqg) ;

// maximum of 15 messages in the buffer at once;

if (buffer.length > 15) buffer.shift();
client.broadcast (msq) ;

});

client.on('disconnect’', function () {
client.broadcast({ announcement: client.sessionlId + ' disconnected' });
});
});

Sunday, November 20, 2011 46

What has to happen on the browser?

1. Create a socket object and send a connection
request to the server.

2. Bind event-handler to receipt-of-message event.

3. The message event-handler needs to:
- for buffer objects: add to chat window in a
loop;
- otherwise just add to chat window.

Let’s look at the browser code:

<script src="/9s/socket.io.js"></script>
<script>
var socket = io.connect('http://localhost:8888');
socket.on('message’', function(obij) {
if ('buffer' in obj) {
for (var i in obj.buffer) { addParaToChat (obj.buffer[i]);

} else {
addParaToChat (obj) ;

}
});

socket.on('connect’', function(){

addParaToChat ({ message: ['System', 'Connected’']})
});
socket.on('disconnect’', function() {

addParaToChat ({ message: ['System', 'Disconnected']})

});
</script>

Sunday, November 20, 2011

}

48

backchannel

A variation on chat: posts (typically questions
for a lecturer) are voted on by all and can be
displayed in order of popularity.

http: ithub.com/bruml2/backchannel

http://github.com/bruml2/backchannel
http://github.com/bruml2/backchannel

node.js installation

http://nodejs.or

. ' Creator of Node js
Feb. 22, 2011
=, " San Francsico, CA

Download
ChangelLog
About
v0.6.2 docs

Wiki
Blog
Community
Demo o)) 0:00:00/ 1:06:34 +
Logo

w

Jobs

shuttersiocx

Yahoo Inc

T’Z:g 111 gn inc. Download
Klout

Ming.ly

¢ ¢ 0 0 0O

2011.11.18 v0.6.2

® node-v@.6.2.tar.gz Source code (build instructions)
® node-v@.6.2.msi Windows installer

® node-v@.6.2.pkg Macintosh installer

¢ Documentation

e QOther release files (like .exe and .pdb)

Historical: versions, docs

Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js documentation

http://nodeis.orqg/docs/v0.6.2/api/all.html

Node.js v0.6.2 Manual &
Documentation

Sunday, November 20, 2011

51

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

Sunday, November 20, 2011

node.js directory

nodecloud.org

NodeCloud is a resource directory gathering sites related to Node. js and ordering them by
their Alexa traffic, allowing to ecvaluate relative popularity of a project. Screenshots are
generated locally using PhantondS.

To suggest necu sites to dbe added to the listing, you can reach ne through ny site or an
tuitter.

Note to programpers ! you might as uell be interested in my Ascii Codes reference chart.

BREARING NEWS : check out Echo Linux, a social news site dedicated to Linux and related
topics?

Share this site

F i @ o & F

Node. js

Home of the MNode.js project, a network application framework
uritten on top of Google UB JavaScript engine.

NodeCloud Ranking @ 1
¢ 19039

Node SmartMachines

Node.js cloud hosting services by Joyent, offering free Node
SmartMachines.

R e Ry S e S

52

Sunday, November 20, 2011

node.js tutorials
The Node Beginner Book

http://nodebeginner.or

The Node Beginner Book » A comprehensive Node.js tutorial
0O 9 *® |+ hup://nodebeginner.org/
r Markup Readability node.sv Final CutProXv HTML/CSS/jQueryv jQuery/Javascripty Accountsv Wikiped
Serif Josefin Sons Std Light T{obaler 2ecesic Beenic Yanone Kaffeesatz Default Fonts

41 Node.js videos | Lanyrd

The Node Beginner Bogk...

About

The aim of this document is to get vou started with developing applications with Node.js, teaching
vou everything vou need to know about "advanced" JavaScript along the way. It goes way beyond
vour typical "Hello World" tutorial.

Status

You are reading the final version of this book, i.e., updates are onlv done to correct errors or to reflect
changes in new versions of Node js.

The code samples in this book are tested to work with Node.js version 0.4.9.

Intended audience

53

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

http:

Sunday, November 20, 2011

node.js tutorials
Mastering Node

visionmedia.github.com/masteringnode
book.html

Mastering Node

Node is an exciting new platform developed by Ryan Dahl, allowing JavaScript developers

performance servers by leveraging Cooale's V8 JavaScript engine, and asynchronous |/0. |
discover how to write high concurrency web servers, utilizing the Common)S module syste
third party modules, high level web development and more.

Installing Node

In this chapter we will be looking at the installation and compilation of node. Although the
install node, we will be looking at homebrew, nDistro, and the most flexible method, of ca
source.

Homebrew

Homebrew is a package management system for OSX written in Ruby, is extremely well ac
install node via the brew executable simply run:

$ brew install node.js

54

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

Sunday, November 20, 2011

node.js tutorials

Node Tuts screencasts
http:[[nodetuts.com

N o D E T U T S EPISODES CONTACTS

Node Tuts is sponsored by:

Deploying to Nodejitsu questionf@fm

by Pedro Teixeira

Also, check out my e-boolk:
In this episode Pedro shows how you can deploy your Node app to the

Nodejitsu cloud.
HANDS -ON

EPISODE 28

Javascript classes, prototypes and closures

In this episcde Pedro digs intc Javascript prototypical chaining, pseudo-classes and closures.

EPISODE 27

55

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js tutorials

How To Node
http://howtonode.or

A Simple Blog with CouchDB, Bogart, and Node.|s By N:;ﬁnozt?gn About HowToNode,.org

Update: By request | have posted a gist of the app.|s using MongoDB Instead of CouchDB. This
i ik i . PP 0 g HowToNode.org is a community
gist also serves as a beginning example for how to use non-promise-based APIs with bogan.

supported blog created by | |
In this article, you will learn how to use Bogarn and CouchDB 1o create a minimal blogging engine. Caswell. The purpose of the blog Is '
The Express with MongoDB article was a huge hit. This article has similar goals but shows a to teach how to do various tasks in i
diferent way of using Node.JS. node. s as well as teach fundamental

concepts that are needed to write
Read more... offactive code.
Fun Putting Node on Moblle Devices By ngf;;"g:'u This site is powered by Wheat, aght |
This articie will walk you through creating an Ubuntu image that can be chrooted inside a mobiie based blogging engine written in '
device like the recently released TouchPad. Once the Ubuntu environment is setup we'll leam node.JS.
how 1o complie and Install node for fun andior profi. The content for this ke Is stored In &
Read more... gt repository that anyone can fork,

. write an article, and send a pull
How To Module By Isaac Z. Schiueter & request. If your article passes the
=L quality standards it will be published

These are some basic steps for writing a NodeJS module.
P wriing and help support the greater node

Most of the suggestions in this document are optional. You can definitely write your program
however you like, and many in the node community enjoy trying out new creative ways of doing

things.
This is merely a set of patterns that noders have found to work for them and their projects. _

Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js books
Node.js in Action (Manning)

Nod@’
INACTI(RR,
\\/\fiAFJ

node.js books

Hands-on node.js
60 pages (of 118) free

http://nodetuts.com

HANDS-ON

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html

node.js books
Node Web Development (Packt)

\

N ¢ ;\K’\>

web development stack

not so good!

Sunday, November 20, 2011

node.js Hosting

Joyent (no.de)
Nodejitsu
Nodester
Heroku

easy; cheap;

Thanks for listening!

