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probably the most 
exciting new idea 

since Ruby on Rails
in 2004
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node.js
2009

Ryan Dahl
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What is node.js?
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What is node.js?
a program execution environment for JS
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A browser is
a program execution environment for JS
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The Chrome browser is
a program execution environment for JS
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node.js is
a program execution environment for JS

with access to the local filesystem
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What is node.js?
a program execution environment for JS

with event-driven, non-blocking I/O
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event-driven:
On launch, the program sits in an 

event-loop waiting for GUI events to 
occur; when they do, each event is 

placed at the end of an event-queue.

9Sunday, November 20, 2011



event-driven(2):
The program removes each event from 
the head of the queue and “handles” it 

by invoking the event-handler 
functions  which have been bound to 

the event.
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“event-handler” 
==

“callback”

The program “calls back”
when the event occurs.
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non-blocking I/O:
When input is requested (e.g., 

disk-access), the program 
doesn’t wait for the data from 

disk.  It continues on with
“something else.”
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non-blocking I/O:
The code to be executed when the disk
data is finally available is placed in a
“callback function” and that function

is invoked when the data-available
event occurs.
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What is node.js?
a program execution environment for JS

with event-driven, non-blocking I/O
written in C++ and incorporating

Google’s V8 JavaScript engine

[also a set of core modules]
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Why is it so fast as a 
network server?

In CGI, each request spawns a new thread with a 
separate instance of the application: new 

interpreter, new initializaton, etc. 

In node.js, each request triggers a callback 
within a single thread (small heap memory 
allocation)which provides an environment 

which can save state. 
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Why is node.js “the future” 
of web applications?

Web evolution:

• a series of linked static pages;
• pages which were dynamically generated from a 

database (templating);
• pages which send significant amounts of new 

data and can ask for updates for parts of a page 
without refreshing the page (Ajax);
• pages which need constant communication; 

updates without asking; many browsers talking 
to each other (chat, backchannel);
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node.js core modules
http
net
child_process
fs
os

sys
url
util
. . .
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require(<module>)

var http = require("http");

[convention: use the same name as module]
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a web server in node:
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a web server in node:
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a web server in node:
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what does the call to
createServer() do?
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what does the call to
createServer() do?

It binds the event-handler function 
(passed as the parameter) with the 

incoming-HTTP-request event.
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a web server in node:

but we can chain our calls!
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a web server in node:
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a web server in node:

what’s wrong here?
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a web server in node:
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the serverResponse object:
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the serverRequest object:
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let’s log the requests:
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let’s log the requests:
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let’s serve a static file:
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let’s serve a static file:
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let’s serve a static file:

30Sunday, November 20, 2011



Web App Framework:
Express
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A Chat Application

(the “demo app” of node.js)
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How does chat work?

Joe, Sue and Bob all go to the same URL.  
They navigate to the same “chat room.”
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How does chat work?
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How does chat work?
1.  When anyone sends a message, the sender’s 
ID and the message are displayed in the 
browsers of all.  (In the sender’s browser, the 
sender is “you.”)
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How does chat work?

2.  When  a new person enters (or leaves) the 
room, everyone else is notified. 

1.  When anyone sends a message, the sender’s 
ID and the message are displayed in the 
browsers of all.  (In the sender’s browser, the 
sender is “you.”)
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How does chat work?

2.  When  a new person enters (or leaves) the 
room, everyone else is notified. 

3.  The newcomer is sent the most recent 
messages. 

1.  When anyone sends a message, the sender’s 
ID and the message are displayed in the 
browsers of all.  (In the sender’s browser, the 
sender is “you.”)
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This isn’t typical client-server!

This requires a:
    permanently-open
    bidirectional
channel.
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Before HTML5: hacks!

long polling
flash
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After HTML5:

websockets!

(a
    permanently-open
    bidirectional
 channel)
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websockets for node.js:

socket.io!

5 different transports
(including long polling and flash)
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JavaScript object syntax:

{
  firstName: “John”,
  lastName: “Brown”,
  age: 23,
  children: [ “Sue”, “Bob”],
  birthdate: [ 1994, 12, 25 ]
}
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back to the chat app:

What messages do we need to send?
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What messages do we need to send?
1.  When anyone sends a message, the sender’s 
ID and the message are displayed in the 
browsers of all.  (In the sender’s browser, the 
sender is “you.”)

Message from the sender’s browser:
<body>

{ message: [<author>, <body>] }
Message from the server to others:
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What messages do we need to send?

Message from the server to others:

2.  When  a new person enters (or leaves) the 
room, everyone else is notified. 

{ announcement: <text> }
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What messages do we need to send?

Message from the server to newcomer:

3.  The newcomer is sent the most recent 
messages. 

{ buffer: [ <msg>, <msg>, ... ] }
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Chat app messages summary:

{ buffer: [ <msg>, <msg>, ... ] }

{ announcement: <text> }

{ message: [<author>, <body>] }

Messages from the server:

Messages from the browser:
<body>
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What has to happen on the server?
1.  Listen for attempts to connect.

2.  When a connection occurs:
       -  create a client object and assign an ID;
       -  bind event-handlers to the events of the
           client: 1) receipt-of-a-message and
                       2) disconnecton
3.  The message event-handler needs to:
       -  add the client’s ID as author;
       -  package author and body into a message
           object;
       -  sent the message object to everyone else.
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Let’s look at the server code:
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What has to happen on the browser?
1.  Create a socket object and send a connection
     request to the server.

2.  Bind event-handler to receipt-of-message event.

3.  The message event-handler needs to:
       -  for buffer objects: add to chat window in a
           loop;
       -  otherwise just add to chat window.
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Let’s look at the browser code:

48Sunday, November 20, 2011



backchannel

A variation on chat: posts (typically questions 
for a lecturer) are voted on by all and can be 
displayed in order of popularity.

http://github.com/bruml2/backchannel
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node.js installation
http://nodejs.org

50Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html


node.js documentation
http://nodejs.org/docs/v0.6.2/api/all.html
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node.js directory
nodecloud.org
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node.js tutorials
The Node Beginner Book
http://nodebeginner.org
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node.js tutorials
Mastering Node

http://visionmedia.github.com/masteringnode/
book.html
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node.js tutorials
Node Tuts screencasts
http://nodetuts.com

55Sunday, November 20, 2011

http://nodejs.org/docs/v0.4.7/api/all.html
http://nodejs.org/docs/v0.4.7/api/all.html


node.js tutorials
How To Node

http://howtonode.org
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node.js books
Node.js in Action (Manning)
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node.js books
Hands-on node.js

60 pages (of 118) free
http://nodetuts.com
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node.js books
Node Web Development (Packt)

not so good!
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node.js Hosting
Joyent (no.de)

Nodejitsu
Nodester
Heroku

easy; cheap;
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Thanks for listening!
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