
Educational Software 
Katie Vale, Ed.D. 
Director of Academic Technology, HUIT 
CS50, 11/6/11 



When is educational software 
particularly useful? 
 Motivation for different learning styles 

  Simulation and role play (including games) 

 Visualization (scientific inquiry, 3D modeling) 

 Collaboration (wikis, shared documents) 

  Interactive drill and practice (direct instruction) 

 Critical thinking (data analysis tools) 

  Learning by doing (students build software or 
movies) 



When is it less useful 
  “I wanted an excuse to learn Ruby/make a 

mobile app/etc.” 

 When it isn’t integrated into a course 

 When it’s an optional assignment 

 When it’s more style than substance (“iPads are 
cool!”) 



How you might think it works 
  Take a CS class 

  Have an idea 

 Write code 

 Give app to a teacher 

  ??? 

  Profit! 

  Sadly, no. 



How it really works 
  Identify an educational problem or set of goals 

with the instructor 

  Identify criteria for success (i.e. tests) 

 Create the materials and choose pedagogical 
methods and media (lectures, assignments, etc.) 

  Pilot the software and tweak as necessary 

 Document and port code in future as needed 



How to write specs 
  “After using this software, students should be able 

to…” 

  Use action verbs in completing this sentence: 
“demonstrate, list, compare, discern, identify” 
instead of passive verbs “understand, 
appreciate, learn” 

  This can be tricky – another approach is to ask 
“what should students remember from this app in 
a few years?” 



Examples 
  “After using these materials, students will be able 

to”: 
  identify parts of a schematic circuit diagram 
  categorize musical works by American jazz musicians 
  list the phonologic differences between Quebecois 

French and Caribbean French 

  Storyboard the action if it’s a game or activity 



Non-ideal Examples 
  “After using these materials, students will be able 

to”: 
  understand statistics better 
  have an appreciation for Vogon poetry 
  know how wireless networks work 

  These are all valid aims, but they are hard to 
assess – ask “how will you know if this has 
happened?” 

  You may have to push the teacher to arrive at 
measurable goals. 



Think about usage 
  How will the software be used? By self-paced 

learners? In class? Homework? As group 
exercise? 

  How will it be graded, if it will? 

  If the teacher thinks of it as an ungraded optional 
exercise, run! 

 Custom educational software is time-consuming 
and expensive. 



Other considerations 
 What do the students have for technology? 

Design for the lowest common denominator, 
even if that’s no fun. 

 What training will the students need? Who will 
provide it? Will the instructor need help too? 

 Can you use control groups? Grants may require 
them, plus assessment data. 



Most important success 
factors 

  Engaged teacher who sees value of project 

  Explicit educational goals 

 Commitment over years (funding, porting) 

 Good documentation (both user and code) 

 Design that can outlast you – don’t try to make yourself 
indispensible 

 Note: the average lifetime of custom educational 
software is less than four years 



Development platforms 
 Will change constantly – design assuming you will 

one day have to port it…several times 

 My first project: Guide to Intermedia to 
Hypercard to museum installation within 4 years 

  The best advice is use civilized coding practices – 
document your code! 

 Accept that teaching needs change and 
eventually your project may be retired 



Has it been done already? 
 Check repositories like http://www.merlot.org, 

http://www.nmc.org, app stores and 
http://atgportfolio.fas.harvard.edu 

  Look through these before developing, you might 
save yourself some time. 



Do you have to write 
something? 
  Is writing software the best way to achieve the 

goals? What about video (e.g. Khan Academy or 
Instructables), a custom text, or a hands-on 
project? 

 Often the best choice is to repurpose existing 
software within a lesson (e.g. Google Maps, 
Matlab, Piazza, Excel, a wiki) 

 Don’t lead with the technology (e.g. “Can 
Farmville be used for teaching?”) 



Careers in educational 
technology 
 Applications developer 

  Educational publishing 

  K-12, library, museum teaching or media 
specialist 

  University teaching or academic technology 

 Corporate and military e-learning and training 

  Broadcast and interactive media 



Want to learn more? 
 Student employment opportunities 

 UTEP and TIE programs at GSE 

 Contact me if you’d like to discuss 
ideas, graduate programs, etc.: 

 katie_vale@harvard.edu 

 Thanks and enjoy CS50! 


