This is CS50.
Harvard University Fall 2012

Problem Set 2: Crypto

due by noon on Thu 9/27

Per the directions at this document's end, submitting this problem set involves submitting source code
via submit50 as well as filling out a Web-based form, which may take a few minutes, so best not to
wait until the very last minute, lest you spend a late day unnecessarily.

Goals.
. Better acquaint you with functions and libraries.
. Allow you to dabble in cryptanalysis.

Recommended Reading.

. Sections 11 — 14 and 39 of http://www.howstuffworks.com/c.htm.
. Chapters 7, 8, and 10 of Programming in C.

diff pset2.pdf hacker2.pdf.

. Hacker Edition challenges you to handle punctuation in inputs.

. Hacker Edition challenges you to swap two variables without a temporary one.
. Hacker Edition challenges you to try out some file 1/0.

. Hacker Edition challenges you to crack actual passwords.

0<9

This is CS50.
Harvard University Fall 2012

Academic Honesty.

All work that you do toward fulfillment of this course's expectations must be your own unless
collaboration is explicitly allowed in writing by the course's instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set's specification.

Viewing or copying another individual's work (even if left by a printer, stored in an executable directory,
or posted online) or lifting material from a book, website, or other source—even in part—and
presenting it as your own constitutes academic dishonesty, as does showing or giving your work, even in
part, to another student or soliciting the work of another individual. Similarly is dual submission
academic dishonesty: you may not submit the same or similar work to this course that you have
submitted or will submit to another. Nor may you provide or make available solutions to problem sets
to individuals who take or may take this course in the future. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the course's instructor or
preceptor.

You are welcome to discuss the course's material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course's instructor or preceptor.

You may turn to the Web for instruction beyond the course's lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course's lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Fine Print.
Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all
other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course's instructor or preceptor. No more than one late day may be spent on this, or any
other, problem set.

1<9

Help!

This is CS50.
Harvard University Fall 2012

Surf on overto cs50.net/discuss and log in if prompted. Then take a look around!

Henceforth, consider CS50 Discuss the place to turn to anytime you have questions. Not only can
you post questions of your own, you can also search for or browse answers to questions already
asked by others. When posting, just be sure to provide as much detail as possible so that we can
assist!

It is expected, of course, that you respect the course's policies on academic honesty. Posting
snippets of code about which you have questions is generally fine. Posting entire programs, even
if broken, is definitely not. If in doubt, simply flag your discussion as "private to staff," particularly
if you need to show us most or all of your code. But the more questions you ask publicly, the
more others will benefit as well!

Certainly don't hesitate to post a question because you think that it's "dumb." It is not!

Sanity Check.

O

Tips.

You should already have the CS50 Appliance installed, per Problem Set 1. But be sure that you
have version 17 (and not 17a, 3-15, or even earlier). To check which version you have, look in the
appliance's bottom-right corner, where you should see 17-#, whereby # represents the "release"
of version 17 that you have. If you see some number other than 17 (or no number at all), head to
cs50.net/appliance for instructions on how to upgrade to version 17.

Once sure that you have version 17, update to the latest release by opening a Terminal window
and executing the command below (which may take a minute or more).

sudo yum -y update

If the command appears to fail, restart the appliance, then try again. If it still appears to fail,
restart your computer, then try again. If it still appears to fail, let us know at
cs50.net/discuss, and we'll lend a hand!

Realize that the CS50 Appliance is a computer, albeit a virtual one. For better or for worse (mostly
worse), computers don't like to be forcibly shut down or otherwise interrupted while in the middle
of something. Do take care, then, not to quit VMware (or VirtualBox), shutdown your own
computer, or even close your laptop's lid while the appliance is in the middle of something (e.g.,
downloading or installing updates, submitting your work, etc.) Best to wait until the appliance
isn't doing anything important, then shut it down (as via the green icon in the appliance's bottom-
right corner). Bad things can happen, too, if your own computer runs out of disk space, so beware
downloading big files on your own computer if you know you're low on disk space while the
appliance is running.

2<9

This is CS50.
Harvard University Fall 2012

When running, the CS50 Appliance "borrows" some of your computer's own RAM and CPU cycles,
which can slow down programs on your computer and vice versa. For maximum performance, try
to launch VMware (or VirtualBox) and the appliance before launching other programs on your
computer, and try to minimize the number of programs running on your computer while the
appliance is running.

With that said, if you have lots of RAM (e.g., 4GB) and lots of CPU cycles (e.g., 2GHz), you might
not need to give any of this a second thought!

A Section of Questions.

You're welcome to dive into these questions on your own, but know that they'll also be explored in
section!

O

Head to

https://www.cs50.net/shorts/

and watch the shorts on loops, scope, and the Caesar Cipher. Be sure you're reasonably
comfortable answering the below when it comes time to submit this problem set's form!

O How does a while loop differ from a do-while loop? When is the latter particularly useful?
[0 Whatdoes undeclared identifier usuallyindicate if outputted by clang?
[0 Why is the Caesar Cipher not very secure?

And unrelated to those shorts!

[0 What's a function?
[0 Why bother writing functions when you can just copy and paste code as needed?

Back when MySpace was cool, it was all the rage to TyPe LiKe This. Maybe it still is? I'm not really
sure. In any case, using the CS50 Appliance, CS50 Run (cs50.net/run), or CS50 Spaces
(cs50.net/spaces), write a program that prompts the user for a message, and then outputs the
message with its first letter capitalized, with all other letters in alternating case, irrespective of the
message's original capitalization, as per the sample output below, wherein boldfaced text
represents some user's input.12 Take care to output non-alphabetical characters unchanged.
Consider this problem an opportunity to practice; you won't be asked to submit this program.

jharvard@run.cs50.net (~): ./a.out
Thanks 4 the add!!!
ThAnKs 4 ThE abd!!!

! css0 Spaces is essentially a fancier version of CS50 Run, complete with code-sharing capabilities and a chat room.

% Note that CS50 Run and CS50 Spaces have what appears to be a Terminal window, but you can't actually type commands
(e.g., clang) in it. That black panel is instead there so that you can see what CS50 Run and CS50 Spaces are doing underneath
the hood when you click the » button at top-left. However, if your program prompts for user input (as with GetString), you
can type user input in that black panel.

3<9

This is CS50.
Harvard University Fall 2012

] Recall from Week 2's second lecture that swapping two variables' values by passing those two
variables to a function (even if called swap) doesn't exactly work, at least not without "pointers," a
topic we'll soon get to. For now, then, let's swap the value of two variables within main itself.

Using the CS50 Appliance, CS50 Run (cs50.net/run), or CS50 Spaces (cs50.net/spaces),
write a program that prompts the user for two integers (storing them in variables called x and vy),
prints those numbers (one per line), swaps those variables' values without using any other
variables, and then re-prints those numbers (one per lined, swapped), as per the sample output
below, wherein boldfaced text represents some user's input.3

jharvard@run.cs50.net (~): ./a.out
x: 1
y: 2
X 1is
y is
X 1is
y is

NN

Consider this problem an opportunity to practice; you won't be asked to submit this program.

O we'll visit file 1/0O (i.e., input and output) later in the term, but have a sneak peek at C's file-
handing functions at:

https://www.cs50.net/resources/cppreference.com/stdio/

Take a look too, as with gedit, at /usr/share/dict/words in the CS50 Appliance, a huge list of
English words. Then, the CS50 Appliance, CS50 Run (cs50.net/run), or CS50 Spaces
(cs50.net/spaces), write a program that accepts as input a command-line argument (i.e., a
string in argv[1]) and then informs the user whether that argument is in the dictionary by
printing YES or NO, as per the sample outputs below, wherein boldfaced text represents some

user's input.

jharvard@run.cs50.net (~): ./a.out appetizer
YES

jharvard@run.cs50.net (~): ./a.out appeteaser
NO

Consider this problem an opportunity to practice; you won't be asked to submit this program.
And don't fret if this one's too challenging for now. We'll revisit the topic eventually!

3 Cough cough, bitwise operations, cough cough.

4<9

This is CS50
Harvard University Fall 2012

Getting Started.

O

Alright, here we go!

Open a terminal window if not open already (whether by opening gedit via
Menu > Programming > gedit or by opening Terminal itself via Menu > Programming > Terminal).
Then execute

mkdir ~/Dropbox/hacker2

at your prompt in order to make a directory called hacker2 in your Dropbox directory. Take care
not to overlook the space between mkdir and ~/Dropbox/hacker2 or any other character for
that matter! Recall that ~ denotes your home directory, ~/Dropbox denotes a directory called
Dropbox therein, and ~/Dropbox/hacker2 denotes a directory called hacker2 within
~/Dropbox.

Now execute

cd ~/Dropbox/hacker?2

to move yourself into (i.e., open) that directory. Your prompt should now resemble the below.

jharvard@appliance (~/Dropbox/hacker2) :

If not, retrace your steps and see if you can determine where you went wrong. You can actually
execute

history

at the prompt to see your last several commands in chronological order if you'd like to do some
sleuthing. You can also scroll through the same one line at a time by hitting your keyboard's up
and down arrows; hit Enter to re-execute any command that you'd like. If still unsure how to fix,
remember that cs50.net/discuss is your friend!

All of the work that you do for this problem set must ultimately reside in your hacker2 directory
for submission.

Passwords et cetera.

O

On most, if not all, systems running Linux or UNIX is a file called /etc/passwd. By design, this file
is meant to contain usernames and passwords, along with other account-related details
(e.g., paths to users' home directories and shells). Also by (poor) design, this file is typically world-
readable. Thankfully, the passwords therein aren't stored "in the clear" but are instead encrypted
using a "one-way hash function." When a user logs into these systems by typing a username and
password, the latter is encrypted with the very same hash function, and the result is compared

5<9

This is CS50.
Harvard University Fall 2012

against the username's entry in /etc/passwd. If the two ciphertexts match, the user is allowed
in. If you've ever forgotten some password, you may have been told that "I can't look up your
password, but | can change it for you." It could be that person doesn't know how. But, odds are
they just can't if a one-way hash function's involved.*

Even though passwords in /etc/passwd are encrypted, the crypto involved is not terribly strong.
Quite often are adversaries, upon obtaining files like this one, able to guess (and check) users'
passwords or crack them using brute force (i.e., trying all possible passwords). Only in recent
years have (most) system administrators stopped storing passwords in /etc/passwd, instead
using /etc/shadow, which is (supposed to be) readable only by root.” Below, though, are some
username: hash pairs from some outdated (fake) systems.®

caesar:50zPJ1UFIYY00o
cs50:50gyRGMzn6mi6
jharvard:50yoN9fp966dU
malan:HA6101/.LeOak
nate:50AcIG/VnV3D2
rbowden:50qg.zrL5e0Sak
skroob:50Bpa7n/23iug
tmacwilliam:50WZ/Wy2GdAlY
zamyla:501MLvy/ml1PIE

Crack these passwords, each of which has been encrypted with C's DES-based (not MD5-based)
crypt function. Specifically, write, in crack.c, a program that accepts a single command-line
argument: an encrypted password.” If your program is executed without any command-line
arguments or with more than one command-line argument, your program should complain and
exit immediately, with main returning any non-zero int (thereby signifying an error that our own
tests can detect). Otherwise, your program must proceed to crack the given password, ideally as
quickly as possible, ultimately printing to standard output the password in the clear followed by
\n, nothing more, nothing less, with main returning 0. The underlying design of this program is
entirely up to you, but you must explain each and every one of your design decisions, including
any implications for performance and accuracy, with profuse comments throughout your source
code. Your program must be designed in such a way that it could crack all of the passwords
above, even if said cracking might take quite a while. That is to say, it's okay if your code might
take several minutes or days or longer to run. What we demand of you is correctness, not
necessarily optimal performance. Your program should certainly work on inputs other than these
as well; hard-coding into your program the solutions to the above is not acceptable.

So that we can automate some tests of your code, your program must behave per the below;
highlighted in bold is some sample input.

jharvard@appliance (~/Dropbox/hacker2): ./crack 50yoN9fp966dU
crimson

4 f you like this stuff, consider taking Computer Science 220r.
STakealookat/etc/passwdintheappliance,forinstance;whereveryouseexapasswordoncewas.

6 http://cdn.cs50.net/2012/fall/psets/2/hacker2/passwd

7 In case you test your code with other ciphertexts, know that command-line arguments with certain characters (e.g., ?) must
be enclosed in single or double quotes; those quotation marks will not end up in argv itself.

6<9

This is CS50.
Harvard University Fall 2012

Assume that users' passwords, as plaintext, are no longer than eight characters long. As for their
ciphertexts, you'd best pull up the "man page" (i.e., manual) for crypt by executing

man crypt

in a terminal window so that you know how the function works. In particular, make sure you
understand its use of a "salt." (According to the man page, a salt "is used to perturb the algorithm
in one of 4096 different ways," but why might that be useful?) As implied by that man page, you'll
likely want to put

#define XOPEN SOURCE
#include <unistd.h>

at the top of your file and link your program with -1crypt. (If you use make to compile your
code, that switch will be included automatically.)

You might also want to read up on C's support for file I/O, as there's quite a number of English
words in /usr/share/dict/words in the appliance that might (or might not) save your
program some time.

By design, /etc/passwd entrusts the security of passwords to an assumption: that adversaries
lack the computational resources with which to crack those passwords. Once upon a time, that
may have been true. Perhaps some still do. But when it comes to security, assumptions are
dangerous. May that this problem set make that claim all the more real.

We should note that this problem set is no invitation to seek out other passwords to crack.? Do
not conflate these Hacker Editions with "black hat" editions. We hope, though, that by
understanding better the design of today's systems, you might one day build better systems
yourself. Besides acquainting you further with C, this problem set urges you to start questioning
designs, as vulnerabilities (if not regrets) often result from poor ones.

If you'd like to play with the staff's own implementation of crack, well, sorry! :-) Where'd be the
fun in that?

&n fact, do bear in mind the policies at
http://www.fas-it.fas.harvard.edu/services/student/policies/rules_and responsibilities.

7<9

This is CS50.
Harvard University Fall 2012

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Open a terminal window (as via Menu > Programming > Terminal or within gedit) then execute
sudo yum -y update

to ensure you have the latest release of the appliance. Then execute:

cd ~/Dropbox/hacker?2

And then execute:

1s

At a minimum, you should see crack.c. If not, odds are you skipped some step(s) earlier! If you
do see those files, you are ready to submit your source code to us. Execute:

submit50 ~/Dropbox/hacker?2

and follow the on-screen instructions. That command will essentially upload your entire
~/Dropbox/hacker2 directory to CS50's servers, where your TF will be able to access it. The
command will inform you whether your submission was successful or not. And you may inspect
your submission at cs50.net/submit.

You may re-submit as many times as you'd like; we'll grade your most recent submission. But take
care not to submit after the problem set's deadline, lest you spend a late day unnecessarily or risk

rejection entirely.

If you run into any trouble at all, let us know via cs50.net/discuss and we'll try to assist! Just
take care to seek help well before the problem set's deadline, as we can't always reply right away!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/2/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 2.

8<9

