This is CS50.
Harvard University Fall 2012

Problem Set 3: Scramble

due by noon on Thu 10/4

Per the directions at this document’s end, submitting this problem set involves submitting source code
via submit50 as well as filling out a Web-based form, which may take a few minutes, so best not to
wait until the very last minute, lest you spend a late day unnecessarily.

Goals.

. Learn to read and build upon someone else’s code.
. Learn how to encapsulate data.

. (Play.)

Recommended Reading.

. Chapters 13, 15, and 18 of Programming in C.

diff psetl.pdf hacker2.pdf.

. Hacker Edition requires a sort in O(n log n).
. Hacker Edition expects INSPTRATION instead of SCRAMBLE.
. Hacker Edition assigns different values to letters.

0<10



This is CS50.
Harvard University Fall 2012

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or posted online) or lifting material from a book, website, or other source—even in part—and
presenting it as your own constitutes academic dishonesty, as does showing or giving your work, even in
part, to another student or soliciting the work of another individual. Similarly is dual submission
academic dishonesty: you may not submit the same or similar work to this course that you have
submitted or will submit to another. Nor may you provide or make available solutions to problem sets
to individuals who take or may take this course in the future. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the course’s instructor or
preceptor.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor or preceptor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Fine Print.
Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all
other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course’s instructor or preceptor. No more than one late day may be spent on this, or any
other, problem set.

1<10



This is CS50
Harvard University Fall 2012

A Section of Questions.

You’re welcome to dive into these questions on your own, but know that they’ll also be explored in
section!

O

Head to

https://www.cs50.net/shorts/

and watch the shorts on GDB and binary search plus two or more of bubble sort, insertion sort,
merge sort, and selection sort. (Phew, so many shorts! And so many sorts! Ha.) Be sure you're
reasonably comfortable answering the below (even if you didn’t watch all of the shorts) when it
comes time to submit this problem set’s form!

GDB lets you “debug” a program, but, more specifically, what does it let you do?
Why does binary search require that an array be sorted?

Why is bubble sort in O(n?)?

Why is insertion sort in Q(n)?

What's the worst-case running time of merge sort?

In no more than 3 sentences, how does selection sort work?

OoOooooao

Using the CS50 Appliance, CS50 Run (cs50.net/run), or CS50 Spaces (cs50.net/spaces), type
out the program below, then complete its implementation, per its ToDO. Consider this problem
an opportunity to practice; you won’t be asked to submit this program.

#include <cs50.h>
#include <stdio.h>

#define SIZE 8

bool search(int needle, int haystack[], int size)

{
// TODO: return true iff needle is in haystack, using binary search

}
int main (void)

int numbers([SIZE] = { 4, 8, 15, 16, 23, 42, 50, 108 };
printf ("> ");
int n = GetInt();
if (search(n, numbers, SIZE))
printf ("YES\n") ;
return 0;

2<10



This is CS50
Harvard University Fall 2012

] Using the CS50 Appliance, CS50 Run (cs50.net/run), or CS50 Spaces (cs50.net/spaces), type
out the program below, then complete its implementation, per its TODO. Consider this problem
an opportunity to practice; you won’t be asked to submit this program.

#include <stdio.h>
#define SIZE 8

void sort(int array[], int size)
{

// TODO: sort array using any algorithm in O(n log n)
}

int main (void)

{

I1Z8]l = { 4, 15, 1o, 50, 8, 23, 42, 108 };
0; 1 < SIZE; 1i++)

d ", numbers[i]);

int numbers|[S

for (int i =
printf ("%

printf ("\n");

sort (numbers, SIZE);

for (int i = 0; 1 < SIZE; i++)
printf ("%d ", numbers([i]);

printf ("\n");

return 0;

Getting Started.

O Welcome back!

Open a terminal window if not open already (whether by opening gedit via
Menu > Programming > gedit or by opening Terminal itself via Menu > Programming > Terminal).
Then execute

sudo yum -y update

at your prompt to ensure that your appliance is up-to-date. In the future, you can instead execute

update50

instead.!

! We decided to simplify the process by writing our own update program for you!

3<10



This is CS50
Harvard University Fall 2012

Recall that, for Problem Sets 1 and 2, you started writing programs from scratch, creating your
own psetl and pset2 directories with mkdir. For Problem Set 3, you’ll instead download
“distribution code” (otherwise known as a “distro”), written by us, and add your own lines of code
to it. You'll first need to read and understand our code, though, so this problem set is as much
about learning to read someone else’s code as it is about writing your own!

Okay, go ahead and execute

mkdir ~/Dropbox/hacker3

in order to make a directory called hacker3 in your Dropbox directory. Then execute

cd ~/Dropbox/hacker3

to move yourself into that directory. Your prompt should now resemble the below.

jharvard@appliance (~/Dropbox/hacker3):
If not, retrace your steps and see if you can determine where you went wrong!

Next execute

wget http://cdn.cs50.net/2012/fall/psets/3/hacker3/scramble.c

in order to download this problem set’s distribution code. If you execute

1s

you should see that you indeed now have a file called scramble.c in your hacker3 directory. (If
not, be sure you didn’t make a typo in that long URL!)

Lastly, execute

wget http://cdn.cs50.net/2012/fall/psets/3/hacker3/words

in order to download a dictionary with 172,806 English words. Confirm that it downloaded
successfully by executing

1s
one more time.

All of the work that you do for this problem set must ultimately reside in your hacker3 directory
for submission.

4<10



This is CS50.
Harvard University Fall 2012

Scramble.

O

And now it’s time to play. Scramble is a game (currently popular on smart phones) that challenges
you to find as many words as possible in a 4x4 grid of letters before a timer expires. Each pair of
letters in a word can be adjacent horizontally, vertically, or diagonally. Below, for instance, is
what the game looks like on an iPhone (at 4:33am). Present are words like LOTS, NO, NOD, and
SUM, along with (believe it or not) 308 other words.

wil.Verizon & 92% [}

D :50 mw

IN[D]T]S
olole]u

BEO0
86606

Okay, open up a terminal window, if not open already, and execute

~csb0/hacker3/scramble

in order to try out the staff’s implementation of scramble. You should see a 4x4 grid filled with
letters. As soon as you spot a word, type it and hit Enter. If it's indeed a word in the grid (and in a
dictionary of English words), your score will increase 1 point for each letter in the word. (Good
job!) By default, you'll have 30 seconds to find as many words as you can. You won’t see the
clock ticking, but each time you input a word, you’ll see how many seconds you have left. As soon
as time’s run out, you’ll be allowed to type one last word. (To quit the game early, hit ctrl-c.)

Okay, now go ahead and execute
~cs50/hacker3/scramble

again. Odds are the grid of letters changed? That’s because the distribution code uses rand, a
function that lets you generate pseudorandom numbers (and, thus, ASCII letters). But what if you
don’t want the grid’s letters to change each time you run scramble, particularly while debugging?
No problem, simply execute

~csb0/hacker3/scramble 1

5<10



This is CS50.
Harvard University Fall 2012

to play grid #1, or
~cs50/hacker3/scramble 2

to play grid #2, and so forth. That (otherwise optional) command-line argument will be used as a
“seed” for rand in order to perturb (i.e., alter) its output.

Okay, stop playing Scramble. Navigate your way to ~/Dropbox/hacker3 and open up
scramble.c with gedit. (Remember how?) The challenge at hand is to complete this game’s
implementation. But first, let’s take a tour.

Notice first that atop scramble.c are a bunch of constants. Take note of the comments above
each. Recall that declaring as constants values that you intend to use multiple times throughout
your code tends to be good practice, so that you can change the value as needed in a single place.

Next, below those constants are some global variables. Global variables tend to be frowned upon
(because there’s usually a cleaner way to achieve some goal). But when the sole purpose of a file
is to implement some program, as is the case here with scramble.c, it's not unreasonable to use
globals to avoid passing around particularly important values again and again among several
functions. For instance, we've declared grid as a global simply because so many functions will
need access to it anyway, as you’ll eventually see.

Notice next how we’ve utilized typedef and struct to declare our very own data type called
word, inside of which is a bool and an array. We’'ll use a whole bunch of those structures in
order to keep track of the words in that dictionary you downloaded (and whether the user has
found them on the grid).

Below word, meanwhile, is dictionary, which we’ve declared as a struct without using
typedef. The result is that this program will have just one dictionary structure, inside of
which is an int and an array of words (each of which is of type word).

Consider the prototypes below dictionary a sneak preview of the functions to come!

Incidentally, take care not to change any code related to 1ogfile, which we use to automate
some tests of your code!

6<10



This is CS50.
Harvard University Fall 2012

Okay, next read through main, focusing first on the comments and then on the code. If unsure at
first glance what some line does, take some time to figure it out. It’ll be a lot easier to write new
code if you understand the code that’s already there! If unfamiliar with some function, try to find
itat https://www.cs50.net/resources/cppreference.com/, else consult its “man page.”
For instance, to pull up the manual for atoi, execute the below.?

man atoi

Notice, incidentally, how we’re utilizing some “ANSI color codes” in main in order to output red
text when the game’s timer expires. They’re a bit cryptic, to be sure, but pretty easy to use. See
http://pueblo.sourceforge.net/doc/manual/ansi color codes.html for other
colors.

Also, while debugging your program, you might want to comment out the call to clear in main
so that you can see everything printed by print £, without anything disappearing.

Next read through each of the functions below main. Don’t fret if you don’t understand find and
crawl, but do take a stab at reading through them. It turns out that crawl implements a
“recursive” algorithm (whereby crawl calls itself) that searches the grid horizontally, vertically,
and diagonally for a particular word, “marking” letters temporarily as it visits them so that it
doesn’t accidentally get caught in an infinite loop.

Meanwhile, initialize might look a bit intimidating, but spend some time figuring out how it
goes about initializing the grid with a distribution of letters. The man page for rand (albeit a bit
cryptic itself) might help you figure out all the arithmetic.

Finally, load definitely has some new syntax, particularly FILE. We'll revisit FILE and more in the
weeks to come. For now, know that 1oad simply loads a whole bunch of words, one per line,

from a file into an array.

Hm, it seems we forgot to implement draw and 1ookup. D’oh.

2 .
On occasion, you may need to execute

man 2 function

or

man 3 function

where function is some function’s name, lest you pull up the manual for a Linux command as opposed to a C function. For
instance, the man page for C’s printf is in (chapter) 3 and not 1, which is the default if you don’t specify a chapter explicitly.

7<10



O

This is CS50.
Harvard University Fall 2012

Suffice it to say we need your help finishing this implementation of scramble! And just a couple
other favors, too, if you don’t mind!

O

Complete the implementation of draw (using some loops and printf) in such a way that
grid[i] [§] represents the letter in row i, column j. You’re welcome to stray from the
aesthetics of the staff’s own solution.

Complete the implementation of 1ookup in such a way that the function returns true iff
(i.e., if and only if) word isin dictionary. Odds are you can do better than linear search!
Enhance scramble in such a way that anytime the user types INSPIRATION, up to three
words are displayed, one of length 5 (if any), one of length 4 (if any), and one of length 3 (if
any), all of which are in the dictionary and in the grid but not yet found.

By default, the distribution code is case-sensitive, whereby if FOO is in dictionary, the
user must type FOO, not foo, in order to score. Alter main in such a way that the user can
type FOO or foo (or even FoO or any other capitalization thereof) in order to score.

Enhance scramble in such a way that letters in words found contribute the values below to
a user’s score (instead of the default of 1):

A=1 G=3 L=2 Q=10 V=5
B=4 H=3 M=4 R=1 W=4
C=4 1=1 N=2 S=1 X=8
D=2 J=10 0=1 T=1 Y=3
E=1 K=5 P=4 U=2 Z=10
F=4

Phew, now you can play (well, maybe after some debugging) your own version of scramble!

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Open a terminal window (as via Menu > Programming > Terminal or within gedit) then execute

updateb50

to ensure you have the latest release of the appliance. Then execute:

cd ~/Dropbox/hacker3

And then execute:

1s

8<10



This is CS50.
Harvard University Fall 2012

At @ minimum, you should see scramble.c. If not, odds are you skipped some step(s) earlier! If
you do see those files, you are ready to submit your source code to us. Execute:

submit50 ~/Dropbox/hacker3

and follow the on-screen instructions. That command will essentially upload your entire
~/Dropbox/hacker3 directory to CS50’s servers, where your TF will be able to access it. The
command will inform you whether your submission was successful or not. And you may inspect
your submission at cs50.net/submit.

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk

rejection entirely.

If you run into any trouble at all, let us know via cs50.net/discuss and we'll try to assist! Just
take care to seek help well before the problem set’s deadline, as we can’t always reply right away!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/3/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 3.

9<10



