This is CS50
Harvard University Fall 2012

Problem Set 7: CS50 Finance

due by noon on Thu 11/8

Goals.

o Introduce you to HTML, CSS, PHP, and SQL.

. Teach you how to teach yourself new languages.
Recommended Reading.

° http://diveintohtml5.info

° http://en.wikipedia.org/wiki/Virtual hosting

d http://php.net/manual/en/langref.php

o http://twitter.github.com/bootstrap/base-css.html
NOTICE.

For this problem set, you are welcome and encouraged to consult "outside resources," including books,
the Web, strangers, and friends, as you teach yourself more about HTML, CSS, PHP, and SQL, so long as
your work overall is ultimately your own. In other words, there remains a line, even if not precisely
defined, between learning from others and presenting the work of others as your own.

You may adopt or adapt snippets of code written by others (whether found in some book, online, or
elsewhere), so long as you cite (in the form of CSS, HTML, or PHP comments) the origins thereof.

And you may learn from your classmates, so long as moments of counsel do not devolve into "show me

your code" or "write this for me." You may not, to be clear, examine the source code of classmates.
If in doubt as to the appropriateness of some discussion, contact the course's instructor or preceptor.

0<27

This is CS50
Harvard University Fall 2012

Academic Honesty.

All work that you do toward fulfillment of this course's expectations must be your own unless
collaboration is explicitly allowed in writing by the course's instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set's specification.

Viewing or copying another individual's work (even if left by a printer, stored in an executable directory,
or posted online) or lifting material from a book, website, or other source—even in part—and
presenting it as your own constitutes academic dishonesty, as does showing or giving your work, even in
part, to another student or soliciting the work of another individual. Similarly is dual submission
academic dishonesty: you may not submit the same or similar work to this course that you have
submitted or will submit to another. Nor may you provide or make available solutions to problem sets
to individuals who take or may take this course in the future. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the course's instructor or
preceptor.

You are welcome to discuss the course's material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course's instructor or preceptor.

You may turn to the Web for instruction beyond the course's lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course's lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Fine Print.
Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all
other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course's instructor or preceptor. No more than one late day may be spent on this, or any
other, problem set.

1<27

This is CS50
Harvard University Fall 2012

A Section of Questions.

You're welcome to dive into these questions on your own, but know that they'll also be explored in
section! Instead of using CS50 Run or CS50 Spaces for these questions, you'll need to use the CS50
Appliance.

] Unlike C, PHP is a "dynamically-typed" language." What does this mean, you ask? Well, say
goodbye to all of those char, float, int, and other keywords you used to use when declaring
variables and functions in C! In PHP, a variable's type is determined by the value that it's currently
holding.

Type the following code into a file called dynamic.php:

<?php

Svar = 7;
printf ("var is a %$s\n", gettype($var));

Svar = "cs50 rocks!";
printf ("var is a %$s\n", gettype($Svar)):;

Svar = true;
printf ("var is a %$s\n", gettype($var));

?>
Now run the file using
php dynamic.php

That tells the PHP interpreter, called php, to run the PHP code in dynamic.php. If you have any
errors in the file, the interpreter will tell you!

Back to our dynamic typing: pretty cool, eh? You definitely couldn't do that in C!
Now, see if you can figure out the type of each of the following values. See
http://php.net/manual/en/language.types.php for reference!

3.50

[uau => l, "H => 2, "o o=> 3]
fopen ("dynamic.php", "r")

NULL

oOood

1Cis"statically"typed.

2<27

This is CS50
Harvard University Fall 2012

One feature of PHP's type system (for better or for worse!) is its ability to juggle types. When you
write a line of PHP code that combines values of different types, PHP will try to do the sensible
thing. Try out each of the following lines of PHP code. What's printed out? Is it what you
expected? Why or why not?

O print ("1" + 2);

O print ("CS" + 50);

O print (1 + "2");

0 print(90 + "9 bottles of beer on the wall");
O print(10 / 7);

O print (7 + true);

In PHP, the array type is different from what you're used to in C. Indeed, you may have already
noticed this above when you saw that

[nan => 1, "H" o=> 2, e o=> 3]

is of type array. The [] syntax is indeed reminiscent of C arrays, but the funky => syntax doesn't
look array-like at all. Indeed, an array (or, more precisely, an "associative array") in PHP is more
similar to a hash table, a collection of keys and values, whereby the key is used to store and
retrieve a particular value. The => syntax specifies a key => value pair, so if you have an array like

Sarr =["a" => 1, "b" => 2, "c" => 3];

then the value of

Sarr["a"]

is 1 and the value of

Sarr["b"];

is 2. And while it's true that you can indeed use a PHP array like a C array, as in
Sarr = [0, 1, 2, 3, 4, 51;

what's actually happening under the hood is that you're getting

$Sarr = [0 => 0, 1 =>1, 2 =>2, 3 =>3, 4 =>4, 5 => 5];

whereby PHP automatically generates index-like keys whenever you don't specify a key for a
value.

Anyway, how nice is it that you don't have to deal with hash functions, linked lists, or anything like
that! Since working with hash tables is so easy now, here's a fun puzzle to work on. Open up a file
called unique.php and in it write a PHP program (also known as a "script") that takes a single
filename as input and then prints out all of the unique words in that file, sorted in alphabetical
order. You may assume that the input file will contain one word per line.

3<27

This is CS50
Harvard University Fall 2012

You'll definitely find PHP's $argv array to be quite helpful here: Google around for details if
you're unsure how it works (though it's basically the same as in C). Likewise, your old friends
fopen and fclose have made their way over from C land as well, though you might find another
PHP function called file of interest. And for sorting... well, you can always dig up your old
sorting code from before, or you can use the built-in sort function. We suggest the latter!

You'll spend a lot of your time in PHP working with strings. Fortunately, dealing with strings in
PHP is much nicer than in C!

In PHP, you can specify a string either with single quotes (as you would a character in C), or with
double quotes (as you would a string literal in C). You get different behavior depending on which
style you use.

With single quotes, you can't use any special "escape" sequences like \n, and you can't embed
variables (called "string interpolation," though more on that in a bit!). Single-quoted strings are
handy when you want a string without having to constantly escape chars that have special
meaning, like \, {, s, and so forth.

However, sometimes you want to use special characters like \n: for that, you'll need to use the
double-quote syntax. There's another benefit to using the double quotes: you can "interpolate"
variables inside of the string so that the variable's value gets added to the string at that position,
much like when you use a format string like "Hello, %s!" in C with printf. Consider the
below.

Sname = "CS50";

// prints out "Hello, CS50!" with a newline after
print ("Hello, $name!\n");

Of course, you can also achieve the same effect with the concatenation operator (.), as in the
below.

print ("Hello, " . $name . "\n");

Anyway, when building websites with PHP, odds are you'll spend some quality time with print
(or printf or echo or even <?=), and string interpolation because one of the benefits of PHP is
that it allows you to generate HTML programmatically instead of writing it out by hand. Imagine,
for instance, that you want to build an HTML form that allows the user to select his or her
concentration from a drop-down. One go at it looks like this:

<select name="concentration">
<option value="1">African and African American Studies</option>
<option value="2">Anthropology</option>
<option value="3">Applied Mathematics</option>

</select>

4<27

This is CS50
Harvard University Fall 2012

You can see how this can quickly become a huge pain! Fortunately, with PHP, we can make this go
a lot faster. In

http://cdn.cs50.net/2012/fall/sections/9/section9/concentrations.txt

we have a simple text file containing all of Harvard's undergraduate concentrations, in
alphabetical order. Download this file using wget (remember how?), and then in a file called
concentrations.php, write PHP code to programmatically open the concentrations.txt
file, read it line by line, and build an HTML drop-down menu containing the alphabetized list of
concentrations. You can just print the result to stdout using echo. And so that "African and
African American Studies" isn't the default concentration, best to put a blank (i.e., valueless)
option at the very top!

To test your implementation, save the output of your program to a file like so

php concentrations.php > concentrations.html

and then open up concentrations.html using the browser of your choice!

Getting Started.

] Start up your appliance and, upon reaching John Harvard's desktop, open a terminal window
(remember how?) and execute

update50
to ensure that your appliance is up-to-date!

Next, follow the directions at

https://manual.cs50.net/Appliance#How_to Enable Apache

to enable the appliance's web server (Apache). And then follow the directions at

https://manual.cs50.net/Appliance#How _to Enable MySQL
to enable the appliance's database server (MySQL).

[Like Problem Set 6, this problem set comes with some distribution code that you'll need to
download before getting started. Go ahead and execute

cd ~/vhosts/localhost

in order to navigate to your ~/vhosts/localhost directory. Then execute

wget http://cdn.cs50.net/2012/fall/psets/7/pset7.zip

5<27

This is CS50
Harvard University Fall 2012

in order to download a ZIP (i.e., compressed version) of this problem set's distro. If you then
execute

1s

you should see that you now have a file called pset7.zip in your ~/vhosts/localhost
directory. Unzip it by executing the below.

unzip pset7.zip

If you again execute

1s

you should see that you now also have directories called html, includes, and templates.
You're now welcome to delete the ZIP file with the below.

rm -f pset7.zip

Next, ensure a few directories are world-executable by executing

chmod a+x ~

chmod a+x ~/vhosts

chmod a+x ~/vhosts/localhost
chmod a+x ~/vhosts/localhost/html

so that the appliance's web server (and you, from a browser) will be able to access your work.
Then, navigate your way to ~/vhosts/localhost/html by executing the below.

cd ~/vhosts/localhost/html

Ensure that a few more directories are word-executable by executing the below.

chmod a+x css img Js
Finally, ensure that the files within those directories are world-readable by executing the below.

chmod a+r css/* img/* js/*

If unfamiliar, * is a "wildcard character," so css/*, for instance, simply means "all files within the
css directory."

For security's sake, don't make ~/vhosts/localhost/includes or

~/vhosts/localhost/templates world-executable (or their contents world-readable), as
they shouldn't be accessible to the whole world (only to your PHP code, as you'll soon see).

6<27

This is CS50.
Harvard University Fall 2012

[0 Even though your code for this problem set will live in ~/vhosts/localhost, let's ensure that
it's nonetheless backed up via Dropbox (assuming you set up Dropbox inside of the appliance). In
a terminal window, execute

In -s ~/vhosts/localhost ~/Dropbox

in order to create a "symbolic link" (i.e., alias or shortcut) to your ~/vhosts/localhost
directory within your ~/Dropbox directory so that Dropbox knows to start backing it up.

[0 Alright, time for a test! Open up Chrome inside of the appliance and visit:*

http://localhost/

You should find yourself redirected to C$50 Finance! (If you instead see Forbidden, odds are you
missed a step earlier; best to try all those chmod steps again.) If you try logging into C$50 Finance
with a username of, oh, skroob and a password of 12345, you should encounter an error about an
Unknown database. That's simply because you haven't created it yet! Let's create it.

Head to
http://localhost/phpMyAdmin/

using Chrome inside of the appliance to access phpMyAdmin, a Web-based tool (that happens to
be written in PHP) with which you can manage MySQL databases.®> Log in as John Harvard if
prompted (with a username of jharvard and a password of crimson). You should then find
yourself at phpMyAdmin's main page. In phpMyAdmin's top-left corner, you should see
No databases. Normally, you can create a database by clicking phpMyAdmin's Databases tab, but
you can also execute some SQL commands manually. Go ahead and visit

http://cdn.cs50.net/2012/fall/psets/7/pset7.sql

using Chrome inside of the appliance, and you should see a whole bunch of SQL. Highlight it all,
then select Edit > Copy (or hit ctrl-C), then return to phpMyAdmin. Click phpMyAdmin's SQL tab,
and paste everything you copied into that page's big text box. Skim what you just pasted to get a
sense of the commands you're about to execute, then click Go. You should then see a green
banner, proclaiming Your SQL query has been executed successfully. In phpMyAdmin's top-left
corner, you should now see link to a database called pset7, beneath which is a link to a table
called users. But more on those later.

Return to

http://localhost/

g Incidentally, you can also access C$50 Finance within the appliance at http://127.0.0.1/, since 127.0.0.1 is the appliance's
(and most computers') "loopback" address.
3 MySQL is a free, open-source database that CS50 Apps, Facebook, and lots of other sites use.

7<27

This is CS50
Harvard University Fall 2012

using Chrome inside of the appliance and reload that page. Then try to log in with a username of
skroob and a password of 12345. This time, you should see some construction.

Recall that the appliance has an "IP address," a number of the form w.x.y.z that's displayed in the
appliance's bottom-right corner. Via that IP address can you access the appliance via HTTP (and
other protocols) from your own computer (but not from some other computer on the Internet).
Confirm as much by visiting

http://w.x.y.z/

using Chrome inside of the appliance, where w.x.y. z is the appliance's IP address (not w.x.y.z
literally). You should again find yourself at C$50 Finance.

Now open up a browser on your own computer and visit the same URL:

http://w.x.y.z/

You should again see the same. Note that you cannot access the appliance from your own
computer via the localhost URL, since, when using a browser on your own computer,
localhost refers to your own computer, which probably isn't running a web server!

If unable to access the appliance from your own computer via its IP address, not to worry. Simply
use Chrome inside of the appliance!

Okay, time for a heads-up. Anytime you create a new file or directory in ~/vhosts/localhost
or some subdirectory therein for this problem set, you'll want to set its permissions with chmod.
Thus far, we've relied on a+r and a+x, but let's empower you with more precise control over
permissions.

Henceforth, for any PHP file, £i1e, that you create, execute

chmod 600 file

so that it's accessible only by you (and the appliance's webserver). Recall that we don't want
visitors to see the contents of PHP files; rather, we want them to see the output of PHP files once
executed (or, rather, interpreted) by the appliance's web server.

For any non-PHP file, £ile, that you create (or upload), execute

chmod 644 file

so that it's accessible via a browser (if that's indeed your intention).

8<27

This is CS50.
Harvard University Fall 2012

And for any directory, directory, that you create, execute

chmod 711 directory
so that its contents are accessible via a browser (if that's indeed your intention).

What's with all these numbers we're having you type? Well, 600 happens to mean rw------- ,
and so all PHP files are made readable and writable only by you; 644 happens to mean
rw-r—--r—--, and so all non-PHP files are to be readable and writable by you and just readable by
everyone else; and 711 happens to mean rwx--x--x, and so all directories are to be readable,
writable, and executable by you and just executable by everyone else. Wait a minute, don't we
want everyone to be able to read (i.e., interpret) your PHP files? Nope! For security reasons, PHP-
based web pages are interpreted "as you" (i.e., under John Harvard's username) in the appliance.*

Okay, still, what's with all those numbers? Well, think of rw-r--r-- as representing three triples
of bits, the first triple of which, to be clear, is rw-. Imagine that - represents 0, whereas r, w, and
x represent 1. And, so, this same triple (rw-) is just 110 in binary, or 6 in decimal! The other two
triples, r-- and r--, then, are just 100 and 100 in binary, or 4 and 4 in decimal! How, then, to
express a pattern like rw-r--r-- with numbers? Why, with 644.

Actually, this is a bit of a white lie. Because you can represent only eight possible values with
three bits, these numbers (6, 4, and 4) are not actually decimal digits but "octal." So you can now
tell your friends that you speak not only binary, decimal, and hexadecimal, but octal as well.

Yahoo!

O

If you're not quite sure what it means to buy and sell stocks (i.e., shares of a company), surf on
over to the URL below for a tutorial.

http://www.investopedia.com/university/stocks/

You're about to implement CS50 Finance, a Web-based tool with which you can manage portfolios
of stocks. Not only will this tool allow you to check real stocks' actual prices and portfolios' values,
it will also let you buy (okay, "buy") and sell (fine, "sell") stocks!®

Just the other day, | received the stock tip below in my inbox!

"Discovery Ventures Signs Letter Of Intent To Acquire The Willa Gold Deposit"

Let's get in on this opportunity now. Head on over to Yahoo! Finance at the URL below.

http://finance.yahoo.com/

* For the curious, we're using suPHP (http://www.suphp.org/) with Apache (http://httpd.apache.org/).
® Per Yahoo's fine print, "Quotes delayed [by a few minutes], except where indicated otherwise."

9<27

This is CS50.
Harvard University Fall 2012

Type the symbol for Discovery Ventures, DVN.V, into the text field in that page's top-left corner
and click Get Quotes. Odds are you'll see a table like the below.

Discovery Ventures Inc. (DVN.V) 4 Add to Portfolio Like < 0

0.27 0.00(0.00%) nov

Prev Close: 0.27 Day's Range: 0.27 -0.28 DISCOVERY VENTURES INC

EDVN.V
0.285
Open: 0.27 52wk Range: 0.13-0.31
0.280
Bid: 0.27 Volume: 204,500
0.275
Ask: 0.28 Avg Vol (3m): 252,728 8570
¥ 0.270
1y Target Est: N/A Market Cap: 5.47M .
Beta: N/A P/E (ttm): N/A ©Yaho! 0.260
10am 12pm 2pm 4pm
Next Earnings Date: N/A EPS (ttm): N/A Pravious Cioes
Div & Yield: N/A (N/A) id 5d 1m 3m

customize chart

Wow, only 27 cents per share! That must be a good thing. Anyhow, notice how Yahoo reports a
stock's most recent (i.e., "Last Trade") price ($0.27) and more. Moreover, scroll down to the
page's bottom, and you should see a toolbox like the below.

Toolbox

Set Alert for DVN.V
¥ Download Data (delayed)
J Updates on your phone
4 Add Quotes to Your Web Site

Add DVN.V Headlines to My Yahoo!

B2 My yasooL |]

Looks like Yahoo lets you download all that data. Go ahead and click Download Data to download
a file in CSV format (i.e., as comma-separated values). Open the file in Excel or any text editor
(e.g., gedit), and you should see a "row" of values, all excerpted from that table. It turns out that
the link you just clicked led to the URL below.

http://download.finance.yahoo.com/d/quotes.csv?s=DVN.V&f=slldltlclohgv&e=.csv

Notice how Discovery Ventures' symbol is embedded in this URL (as the value of the HTTP
parameter called s); that's how Yahoo knows whose data to return. Notice also the value of the
HTTP parameter called f£; it's a bit cryptic (and officially undocumented), but the value of that
parameter tells Yahoo which fields of data to return to you. If curious as to what they mean, head
to the URL below.

http://www.gummy-stuff.org/Yahoo-data.htm
It's worth noting that a lot of websites that integrate data from other websites do so via "screen

scraping," a process that requires writing programs that parse (or, really, search) HTML for data of
interest (e.g., air fares, stock prices, etc.). Writing a screen scraper for a site tends to be a

10< 27

This is CS50.
Harvard University Fall 2012

nightmare, though, because a site's markup is often a mess, and if the site changes the format of
its pages overnight, you need to re-write your scraper.6

Thankfully, because Yahoo provides data in CSV, C$50 Finance will avoid screen scraping
altogether by downloading (effectively pretending to be a browser) and parsing CSV files instead.
Even more thankfully, we've written that code for you!

In fact, let's turn our attention to the code you've been given.

Navigate your way to ~/vhosts/localhost/html and open up index.php with gedit.
(Remember how?) Recall that index.php is the file that's loaded by default when you visit a URL
like http://localhost/. Well, it turns out there's not much PHP code in this file. And there
isn't any HTML at all. Rather, index.php "requires" config.php (which is in a directory called
includes in index.php's parent directory). And index.php then calls render (a function
implemented in a file called functions.php that can also be found inside of includes) in order
to render (i.e., output) a template called portfolio.php (which is in a directory called
templates in index.php's parent directory).

It turns out that index.php is considered a "controller," whereby its purpose in life is to control
the behavior of your website when a user visits http://localhost/ (or, equivalently,
http://localhost/index.php). Eventually, you'll need to add some more PHP code to this
file in order to pass more than just title to render. But for now, let's take a look at
portfolio.php, the template that this controller ultimately renders.

Navigate your way to ~/vhosts/localhost/templates and open up portfolio.php with
gedit. Ah, there's some HTML. Of course, it's not very interesting HTML, but it does explain why
your website is "under construction," thanks to the GIF referenced therein.

Now navigate your way to ~/vhosts/localhost/includes and open up config.php with
gedit. Recall that config.php was required by index.php. Notice how config.php first
enables display of all errors (and warnings and notices, which are less severe errors) so that you're
aware of any syntactical mistakes (and more) in your code. Notice, too, that config.php itself
requires two other files: constants.php and functions.php. Next, config.php calls
session start in order to enable $ SESSION, a "superglobal" variable via which we'll
remember that a user is logged in.” And config.php then uses a "regular expression" (via a call
to preg match) to redirect the users to login.php anytime they visit some page other than
login.php, logout.php, and register.php, assuming $ SESSION["id"] isn't yet set. In
other words, that block of code requires users to log in if they aren't logged in already (and if they
aren't already at one of those three pages).

®See https://manual.cs50.net/Screen_Scraping if curious as to how it can be done nonetheless.

7 Even though HTTP is a "stateless" protocol, whereby browsers are supposed to disconnect from servers as soon as they're
done downloading pages, "cookies" allow browsers to remind servers who they (or, really, you) are on subsequent requests for
content. PHP uses "session cookies" to provide you with $ SESSION, an associative array in which you can store any data to
which you'd like to have access for the duration of some user's visit. The moment a user ends his or her "session" (i.e., visit) by
quitting his or her browser, the contents of $ SESSION are lost for that user specifically because the next time that user visits,
he or she will be assigned a new cookie!

11<27

This is CS50.
Harvard University Fall 2012

Okay, now open up functions.php with gedit. Interesting, it looks like functions.php
requires constants.php. More on that file, though, in a moment. It looks like
functions.php also defines a bunch of functions, the first of which is apologize, which you
can call anytime you need to apologize to the user (because they made some mistake). Defined
next is dump, which you're welcome to call anytime you want to see the contents (perhaps
recursively) of some variable while developing your site. That function is only for diagnostic
purposes, though. Be sure to remove all calls thereto before submitting your work. Next in the
file is 1ogout, a function that logs users out by destroying their sessions. Thereafter is 1ookup, a
function that queries Yahoo Finance for stocks' prices and more. More on that, though, in a bit.
Up next is query, a function that executes a SQL query and then returns the result set's rows, if
any. Below it is redirect, a function that allows you to redirect users from one URL to another.
Last in the file is render, the function that index.php called in order to render
portfolio.php. The function then "extracts" those values into the local scope (whereby a key
of "foo" with a value of "bar" in Svalues becomes a local variable called $foo with a value of
"bar"). And it then requires header.php followed by $template followed by footer.php,
effectively outputting all three.

In fact, navigate your way back to ~/vhosts/localhost/templates and open up
header.php and footer.php in gedit. Ah, even more HTML! Thanks to render, those files'
contents will be included at the top and bottom, respectively, of each of your pages. As a result,
each of your pages will have access to Twitter's Bootstrap library, per the link and script tags
therein.® And each page will have at least four div elements, three of which have unique IDs
(top, middle, and bottom), if only to make styling them with CSS easier. Even more
interestingly, though, notice how header.php conditionally outputs Stitle, if it is set.
Remember how index.php contained the below line of code?

render ("portfolio.php", ["title" => "Portfolio"]);

Well, because render calls extracts on that second argument, an array, before requiring
header.php, header.php ends up having access to a variable called $title. Neat, eh? You
can pass even more values into a template simply by separating such key/value pairs with a
comma, as in the below.

render ("portfolio.php", ["cash"™ => 10000.00, "title" => "Portfolio"]);

Okay, now open up constants.php in ~/vhosts/localhost/includes (which, recall,
config.php required). Suffice it to say, this file defines a bunch of constants, but you shouldn't
need to change any of them.

Navigate your way back to ~/vhosts/localhost/html and open up login.php, another
controller, with gedit. This controller's a bit more involved than index.php as it handles the
authentication of users. Read through its lines carefully, taking note of how it how it queries the
appliance's MySQL database using that query function from functions.php. That function
(which we wrote) essentially simplifies use of PDO (PHP Data Obijects), a library with which you

8 , :
http://twitter.github.com/bootstrap/

12 <27

This is CS50
Harvard University Fall 2012

can query MySQL (and other) databases.” Per its definition in functions.php, the function
accepts one or more arguments: a string of SQL followed by a comma-separated list of zero or
more parameters that can be plugged into that string, not unlike printf. Whereas printf uses
%d, %s, and the like for placeholders, though, query simply relies on question marks, no matter
the type of value. And so the effect of

query ("SELECT * FROM users WHERE username = ?", $ POST["username"]);

in login.php is to replace ? with whatever username has been submitted (via POST) via an HTML
form. (The function also ensures that any such placeholders' values are properly escaped so that
your code is not vulnerable to "SQL injection attacks.") For instance, suppose that President
Skroob tries to log into CS50 Finance by inputting his username and password. That line of code
will ultimately execute the SQL statement below.

SELECT * FROM users WHERE username='skroob'

Beware, though. PHP is weakly (i.e., loosely) typed, and so functions like query can actually return
different types. Indeed, even though query usually returns an array of rows (thanks to its
invocation of PDQ's fetchAll), it can also return false in case of errors. But, unlike SELECTS,
some SQL queries (e.g., DELETES, UPDATES, and INSERTSs) don't actually return rows, and so the
array that query returns might sometimes be empty. When checking the return value of query
for false, then, take care not to use ==, because it turns out than an empty array is == to false
because of implicit casting. But an empty array does not necessarily signify an error, only false
does! Use, then, PHP's === (or !==) operator when checking return values for false, which
compares its operands' values and types (not just their values), as in the below (whose query
unfortunately wraps on to two lines).

Sresult = query ("INSERT INTO users (username, hash, cash)
VALUES (?, 2, 10000.00)", $ POST["username"], crypt($_POST["password"]));
if (Sresult === false)

{

// the INSERT failed, presumably because username already existed

See http://php.net/manual/en/language.operators.comparison.php for more
details.

Anyhow, notice too that 1ogin.php "remembers" that a user is logged in by storing his or her
unique ID inside of $ SESSION. As before, this controller does not contain any HTML. Rather, it
calls apologize or renders login form.php as needed. In fact, open up login form.php in
~/vhosts/localhost/templates with gedit. Most of that file is HTML that's stylized via
some of Bootstrap's CSS classes, but notice how the HTML form therein POSTs to 1ogin.php.
Just for good measure, take a peek at apology.php while you're in that directory as well. And
also take a peek at logout.php back in ~/vhosts/localhost/html to see how it logs out a
user.

9
http://www.php.net/manual/en/class.pdo.php

13 <27

This is CS50.
Harvard University Fall 2012

Alright, now navigate your way to ~/vhosts/localhost/html/css and open up styles.css
with gedit. Notice how this file already has a few "selectors" so that you don't have to include
style attributes the elements matched by those selectors. No need to master CSS for this
problem set, but do know that you should not have more than one div element per page whose
id attribute has a value of top, more than one div element per page whose id attribute has a
value of middle, or more than one div element per page whose id attribute has a value of

bottom; an id must be unique. In any case, you are welcome to modify styles.css as you see
fit.

You're also welcome to poke around ~/vhosts/localhost/html/7js, which contains some
JavaScript files. But no need to use or write any JavaScript for this problem set. Those files are
just there in case you'd like to experiment.

Phew, that was a lot. Help yourself to a snack.

[0 Alright, let's talk about that database we keep mentioning. So that you have someplace to store
users' portfolios, the appliance comes with a MySQL database (called pset7). We've even pre-
populated it with a table called users (which is why you were able to log in as President Skroob).
Let's take a look.

Head back to

http://localhost/phpMyAdmin/

using Chrome inside of the appliance to access phpMyAdmin. Log in as John Harvard if prompted
(with a username of jharvard and a password of crimson). You should then find yourself at
phpMyAdmin's main page, in the top-left corner of which is that table called users. Click the name
of that table to see its contents. Ah, some familiar folks. In fact, there's President Skroob's
username and a hash of his password (which is the same as the combination to his luggage)!

Now click the tab labeled Structure. Ah, some familiar fields. Recall that 1ogin.php generates
queries like the below.

SELECT id FROM users WHERE username='skroob'

As phpMyAdmin makes clear, this table called users contains three fields: id (the type of which is
an INT that's UNSIGNED) along with username and hash (each of whose types is VARCHAR). It
appears that none of these fields is allowed to be NULL, and the maximum length for each of each
of username and hash is 255. A neat feature of id, meanwhile, is that it will AUTO INCREMENT:
when inserting a new user into the table, you needn't specify a value for id; the user will be
assigned the next available INT. Finally, if you click Indexes (above Information), you'll see that
this table's PRIMARY key is id, the implication of which is that (as expected) no two users can
share the same user ID."® Of course, username should also be unique across users, and so we
have also defined it to be so (per the additional Yes under Unique). To be sure, we could have
defined username as this table's primary key. But, for efficiency's sake, the more conventional

10 primary key is a field with no duplicates (i.e., that is guaranteed to identify rows uniquely).

14 <27

This is CS50.
Harvard University Fall 2012

approach is to use an INT like id. Incidentally, these fields are called "indexes" because, for
primary keys and otherwise unique fields, databases tend to build "indexes," data structures that
enable them to find rows quickly by way of those fields.

Make sense?

] Okay, let's give each of your users some cash. Assuming you're still on phpMyAdmin's Structure
tab, you should see a form with which you can add new columns. Click the radio button
immediately to the left of After, select hash from the drop-down menu, as in the below, then
click Go.

Fc Add |1 column(s)(At End of Table At Beginning of Table (¢ After | hash s Go

Via the form that appears, define a field called cash of type DECIMAL with a length of 65, 4, with
a default value of 0.0000, and with an attribute of UNSIGNED, as in the below, then click Save.

Structure ¢,
Name Type © Length/Values © Default & Collation Attributes Null Index A_| Comments

a s 2 s UNSIGNED | ¢ [
— DECIMAL v 65.4 As defined: v v

«

0.0000

If you pull up the documentation for MySQL at

http://dev.mysgl.com/doc/refman/5.5/en/numeric-types.html

you'll see that the DECIMAL data type is used to "store exact numeric data values." A length of
65, 4 for a DECIMAL means that values for cash can have no more than 65 digits in total, 4 of
which can be to the right of the decimal point. (Ooo, fractions of pennies. Sounds like Office
Space.)

Okay, return to the tab labeled Browse and give everyone $10,000.00 manually.'* The easiest way
is to click Check All, then click Change to the right of the pencil icon. On the page that appears,
change 0.0000t0 10000.0000 for each of your users, then click Go. Won't they be happy!

] It's now time to code! Let's empower new users to register.

Return to a terminal window, navigate your way to ~/vhosts/localhost/templates and
execute the below."

cp login form.php register form.php

Then open up register form.php with gedit and change the value of form's action
attribute from login.php to register.php. Next add an additional field of type password to

"n theory, we could have defined cash as having a default value of 10000.000, but, in general, best to put such settings in
code, not your database, so that they're easier to change.

2 you are welcome, particularly if among those more comfortable, to stray from these filename conventions and structure your
site as you see fit, so long as your implementation adheres to all other requirements.

15<27

This is CS50.
Harvard University Fall 2012

the HTML form called confirmation so that users are prompted to input their choice of
passwords twice (to discourage mistakes). Finally, change the button's text from Log In to
Register and change

or register for an account

to

or log in
so that users can navigate away from this page if they already have accounts.

Then, using gedit, create a new file called register.php with the contents below, taking care
tosaveitin ~/vhosts/localhost/html.

<?php

// configuration
require("../includes/config.php");

// 1f form was submitted
if ($7SERVER["REQUESTﬁMETHOD"] == "POST")
{
// TODO
}

else

{
// else render form
render ("register form.php", ["title" => "Register"]);

?>
Alright, let's take a look at your work! Bring up

http://localhost/login.php

in Chrome inside of the appliance and click that page's link to register.php. You should then
find yourself at http://localhost/register.php. If anything appears awry, feel free to
make tweaks to register form.php or register.php. Just be sure to save your changes and
then reload the page in the browser.

16 <27

This is CS50
Harvard University Fall 2012

Of course, register.php doesn't actually register users yet, so it's time to tackle that ToDO!
Allow us to offer some hints.

O If $ POST["username"] or $ POST ["password"] is empty or if $ POST["password"]
does not equal $ POST ["confirmation"], you'll want to inform registrants of their error.
[0 Toinsert a new user into your database, you might want to call
query ("INSERT INTO users (username, hash, cash) VALUES(?, ?, 10000.00)",
$ POST["username"], crypt($ _POST["password"]));
though we leave it to you to decide how much cash your code should give to new users.
O Know that query will return false if your INSERT fails (as can happen if, say, username
already exists). Be sure to check for false with ===and not ==.
O If, though, your INSERT succeeds, know that you can find out which id was assigned to that

user with code like the below.
$rows = query ("SELECT LAST INSERT ID() AS id");
$id = Srows[0]["id"];
O If registration succeeds, you might as well log the new user in (as by "remembering" that id
in $ SESSION), thereafter redirecting to index.php.

All done with the above? Ready to test? Head back to

http://localhost/register.php

using Chrome inside of the appliance and try to register a new username. If you reach
index.php, odds are you done good! Confirm as much by returning to phpMyAdmin, clicking

once more that tab labeled Browse for the table called users. May that you see your new user.
If not, it's time to debug!

Be sure, incidentally, that any HTML generated by register.php is valid, as by ctrl- or right-
clicking on the page in Chrome, selecting View Page Source, highlighting and copying the source
code, and then pasting it into the W3C's validator at

http://validator.w3.org/#validate by input

and then clicking Check. Ultimately, the Result of checking your page for validity via the W3C's
validator should be Passed or Tentatively passed, in which case you should see a friendly green
banner. Warnings are okay. Errors (and big red banners) are not. Note that you won't be able to
"validate by URI" at http://validator.w3.org/#validate by uri, since your appliance
isn't accessible on the public Internet!

Do bear in mind as you proceed further that you are welcome to play with and learn from the
staff's implementation of C$50 Finance, available at the URL below.

https://www.cs50.net/finance/

In particular, you are welcome to register with as many (fake) usernames as you would like in
order to play. And you are welcome to view our pages' HTML and CSS (by viewing our source

17 <27

This is CS50.
Harvard University Fall 2012

using your browser) so that you might learn from or improve upon our own design. If you wish,
feel free to adopt our HTML and CSS as your own.

But do not feel that you need copy our design. In fact, for this problem set, you may modify every
one of the files we have given you to suit your own tastes as well as incorporate your own images
and more. In fact, may that your version of CS50 Finance be nicer than ours!

] Okay, now it's time to empower users to look up quotes for individual stocks. Odds are you'll
want to create a new controller called, say, quote.php plus two new templates, the first of which
displays an HTML form via which a user can submit a stock's symbol, the second of which displays,
minimally, a stock's latest price (if passed, via render, an appropriate value).

How to look up a stock's latest price? Well, recall that function called lookup in
functions.php. Odds are you'll want to call it with code like the below.

S$stock = lookup (S POST["symbol"]);

Assuming the value of $ POST["symbol"] is a valid symbol for an actual stock, lookup will
return an associative array with three keys for that stock, namely its symbol, its name, and its
price. Know that you can use PHP's number format function (somehow!) to format price to
at least two decimal places but no more than four decimal places.

Of course, if the user submits an invalid symbol (for which 1ookup returns false), be sure to
inform the user somehow. Be sure, too, that any HTML generated by your templates is valid, per
the W3C's validator.

[0 And now it's time to do a bit of design. At present, your database has no way of keeping track of
users' portfolios, only users themselves.” It doesn't really make sense to add additional fields to
users itself in order to keep track of the stocks owned by users (using, say, one field per company
owned). After all, how many different stocks might a user own? Better to maintain that datain a
new table altogether so that we do not impose limits on users' portfolios or waste space with
potentially unused fields.

Exactly what sort of information need we keep in this new table in order to "remember" users'
portfolios? Well, we probably want a field for users' IDs (id) so that we can cross-reference
holdings with entries in users. We probably want to keep track of stocks owned by way of their
symbols since those symbols are likely shorter (and thus more efficiently stored) than stocks'
actual names." And we probably want to keep track of how many shares a user owns of a
particular stock. In other words, a table with three fields (id, symbol, and shares) sounds pretty
good, but you're welcome to proceed with a design of your own. Whatever your decision, head
back to phpMyAdmin and create this new table, naming it however you see fit. To create a new
table, click pset7 in phpMyAdmin's top-left corner, and on the screen that appears, input a name

13 By "portfolio," we mean a collection of stocks (i.e., shares of companies) that some user owns.

% Of course, you could also assign unique numeric IDs to stocks and remember those instead of their symbols. But then you'd
have to maintain your own database of companies, built up over time based on data from, say, Yahoo. It's probably better
(and it's certainly simpler), then, to keep track of stocks simply by way of their symbols.

18 <27

This is CS50
Harvard University Fall 2012

for your table and some number of columns below Create table, then click Go. On the screen that
appears next, define (in any order) each of your fields.

If you decide to go with three fields (namely id, symbol, and shares), realize that id should not
be defined as a primary key in this table, else each user could own no more than one company's
stock (since his or her id could not appear in more than one row). Realize, too, that you shouldn't
let some id and some symbol to appear together in more than one row. Better to consolidate
users' holdings by updating shares whenever some user sells or buys more shares of some stock
he or she already owns. A neat way to impose this restriction while creating your table is to define
a "joint primary key" by selecting an Index of PRIMARY for both id and symbol. That way,
INSERT will fail if you try to insert more than one row for some pair of id and symbol. We leave
it to you, though, to decide your fields' types.”> When done defining your table, click Save!

[0 Before we let users buy and sell stocks themselves, let's give some shares to President Skroob and
friends at no charge. Click, in phpMyAdmin's left-hand frame, the link to users and remind
yourself of your current users' IDs. Then click, in phpMyAdmin's left-hand frame, the link to your
new table (for users' portfolios), followed by the tab labeled Insert. Via this interface, go ahead
and "buy" some shares of some stocks on behalf of your users by manually inserting rows into this
table. (You may want to return to Yahoo! Finance to look up some actual symbols.) No need to
debit their cash in users; consider these shares freebies.

Once you've bought your users some shares, let's see what you did. Click the tab labeled SQL and
run a query like the below, where tb1 represents your new table's name.

SELECT * FROM tbl WHERE id = 7

Assuming 7 is President Skroob's user ID, that query should return all rows from tbl that
represent the president's holdings. If the only fields in table are, say, id, symbol, and shares,
then know that the above is actually equivalent to the below.

SELECT id, symbol, shares FROM tbl WHERE id = 7

If, meanwhile, you'd like to retrieve only President Skroob's shares of Discovery Ventures, you
might like to try a query like the below.

SELECT shares FROM tbl WHERE id = 7 AND symbol = 'DVN.V'

If you happened to buy President Skroob some shares of that company, the above should return
one row with one column, the number of shares. If you did not get buy any such shares, the
above will return an empty result set.

Incidentally, via this SQL tab, you could have inserted those "purchases" with INSERT statements.
But phpMyAdmin's GUI saved you the trouble.

15Ifyouincludeidinthistable,knowthatitstypeshould match that in users. But don't specify AUTO INCREMENT for that field
in this new table, as you only want auto-incrementation when user IDs are created for new users. And don't call your table
tbl.

19<27

This is CS50.
Harvard University Fall 2012

Alright, let's put this knowledge to use. It's time to let users peruse their portfolios! Overhaul
index.php (a controller) and portfolio.php (a template) in such a way that they report each
of the stocks in a user's portfolio, including number of shares and current price thereof, along with
a user's current cash balance. Needless to say, index.php will need to invoke 1ookup much like
quote.php did, though perhaps multiple times. And know that a PHP script can certainly invoke
query multiple times, even though, thus far, we've seen it used in a file no more than once. And
you can certainly iterate over the array it returns in a template (assuming you pass it in via
render). For instance, if your goal is simply to display, say, President Skroob's holdings, one per
row in some HTML table, you can generate rows with code like the below, where $positions is
an array of associative array, each of which represents a position (i.e., a stock owned).

<table>
<?php

foreach (Spositions as $position)
{
print ("<tr>");

print ("<td>" . S$Sposition["symbol"] . "</td>");
print ("<td>" . S$position["shares"] . "</td>");
print ("<td>" . S$position["price"] . "</td>");

print ("</tr>");

?>
</table>

Alternatively, you can avoid using the concatenation operator (.) via syntax like the below:

<table>
<?php

foreach (Spositions as $position)

{
print ("<tr>");
print ("<td>{S$position["symbol"]}</td>");
print ("<td>{S$position["shares"]}</td>");
print ("<td>{S$position["price"]}</td>");
print ("</tr>");

?>
</table>

Note that, in the above version, we've surrounded the lines of HTML with double quotes instead
of single quotes so that the variables within ($position["symbol"], $Sposition["shares"]),
and S$position["price"]) are interpolated (i.e., substituted with their values) by PHP's
interpreter; variables between single quotes are not interpolated. And we've also surrounded
those same variables with curly braces so that PHP realizes they're variables; variables with
simpler syntax (e.g., $foo) do not require the curly braces for interpolation.’® Anyhow, though
commonly done, generating HTML via calls to print isn't terribly elegant. An alternative approach,
though still a bit inelegant, is code more like the below.

'8 It's fine to use double quotes inside those curly braces, even though we've also used double quotes to surround the entire
argument to print.

20< 27

This is CS50
Harvard University Fall 2012

<?php foreach ($positions as $position): ?>

<tr>
<td><?= $position["symbol"] ?></td>
<td><?= $position["shares"] ?></td>
<td><?= $position["price"] ?></td>
</tr>

<? endforeach ?>

Of course, before you can even pass Spositions to portfolio.php, you'll need to define it in
index.php. Allow us to suggest code like the below, which combines names and prices from
lookup with shares and symbols, as might be returned as $rows from query.

Spositions = [];

foreach ($rows as S$row)

{
Sstock = lookup ($row["symbol"]) ;
if ($stock !== false)

{
Spositions[] = [
"name" => S$stock["name"],
"price" => $stock["price"],
"shares" => S$row["shares"],
"symbol" => $row["symbol"]

Note that, with this code, we're deliberately create a new array of associative arrays (Spositions)
rather than add names and prices to an existing array of associative arrays (Srows). In the
interests of good design, it's generally best not to alter functions' return values (like Srows from

query).

Now, much like you can pass a page's title to render, so can you pass these positions, as with the
below.

render ("portfolio.php", ["positions™ => S$positions, "title" => "Portfolio"]);

Of course, you'll also need to pass a user's current cash balance from index.php to
portfolio.php viarender as well, but we leave it to you to figure out how.

To be clear, in the spirit of MVC, though, do take care not to call 1ookup inside of that (or any
other) template; you should only call 1ookup in controllers. Even though templates (aka views)
can contain PHP code, that code should only be used to print and/or iterate over data that's been

passed in (as via render) from a controller.

As for what HTML to generate, look, as before, to

https://www.cs50.net/finance/

21<27

This is CS50.
Harvard University Fall 2012

for inspiration or hints. But do not feel obliged to mimic our design. Make this website your own!
Although any HTML and PHP code that you yourself write should be pretty-printed (i.e., nicely
indented), it's okay if lines exceed 80 characters in length. HTML that you generate dynamically
(as via calls to print), though, does not need to be pretty-printed.

As before, be sure to display stocks' prices and users' cash balances to at least two decimal places
but no more than four.

Incidentally, though we keep using President Skroob in examples, your code should work for
whichever user is logged in.

As always, be sure that the HTML generated by index.php is valid.

] And now it is time to implement the ability to sell with a controller called, say, sell.php and
some number of templates. We leave the design of this feature to you. But know that you can
delete rows from your table (on behalf of, say, President Skroob) with SQL like the below.

DELETE FROM tbl WHERE id = 7 AND symbol = 'DVN.V'

We leave it to you to infer exactly what that statement should do. Of course, you could try the
above out via phpMyAdmin's SQL tab. Now what about the user's cash balance? Odds are, your
user is going to want the proceeds of all sales. So selling a stock involves updating not only your
table for users' portfolios but users as well. We leave it to you to determine how to compute
how much cash a user is owed upon sale of some stock. But once you know that amount (say,
$500), SQL like the below should take care of the deposit (for, say, President Skroob)."

UPDATE users SET cash = cash + 500 WHERE id = 7

It's fine, for simplicity, to require that users sell all shares of some stock or none, rather than only
a few. Needless to say, try out your code by logging in as some user and selling some stuff. You
can always "buy" it back manually with phpMyAdmin.

As always, be sure that your HTML is valid!
[Now it's time to support actual buys. Implement the ability to buy, with a controller called, say,
buy.php and some number of templates.18 The interface with which you provide a user is

entirely up to you, though, as before, feel free to look to

https://www.cs50.net/finance/

"7 Of course, if the database or web server happens to die between this DELETE and UPDATE, President Skroob might lose out
on all of that cash. You need not worry about such cases! It's also possible, because of multithreading and, thus, race
conditions, that a clever president could trick your site into paying out more than once. You need not worry about such cases
either! Though, if you're so very inclined, you can employ SQL transactions (with InnoDB tables). See
http://dev.mysql.com/doc/refman/5.5/en/innodb.html for reference.
18

As before, you need not worry about interruptions of service or race conditions.

22 <27

This is CS50
Harvard University Fall 2012

for inspiration or hints. Of course, you'll need to ensure that a user cannot spend more cash than
he or she has on hand. And you'll want to make sure that users can only buy whole shares of
stocks, not fractions thereof. For this latter requirement, know that a call like

preg match ("/"\d+$/", $_POST["shares"])

will return true if and only if $ POST ["shares"] contains a non-negative integer, thanks to its
use of a regular expression. See http://www.php.net/preg match for details. Take care to
apologize to the user if you must reject their input for any reason. In other words, be sure to
perform rigorous error-checking. (We leave to you to determine what needs to be checked!)

When it comes time to store stocks' symbols in your database table, take care to store them in
uppercase (as is convention), no matter how they were inputted by users, so that you don't
accidentally treat, say, dvn.v and DVN.V as different stocks. Don't force users, though, to input
symbols in uppercase.

Incidentally, if you implemented your table for users' portfolios as we did ours (with that joint
primary key), know that SQL like the below (which, unfortunately, wraps onto two lines) will insert
a new row into table unless the specified pair of id and symbol already exists in some row, in
which case that row's number of shares will simply be increased (say, by 10).

INSERT INTO table (id, symbol, shares) VALUES(7, 'DVN.V', 10)
ON DUPLICATE KEY UPDATE shares = shares + VALUES (shares)

As always, be sure to bang on your code. And be sure that your HTML is valid!

Alright, so your users can now buy and sell stocks and even check their portfolio's value. But they
have no way of viewing their history of transactions.

Enhance your implementations for buying and selling in such a way that you start logging
transactions, recording for each:

O Whether a stock was bought or sold.

[0 The symbol bought or sold.

[0 The number of shares bought or sold.

[0 The price of a share at the time of transaction.
[0 The date and time of the transaction.

Then, by way of a controller called, say, history.php and some number of templates, enable
users to peruse their own history of transactions, formatted as you see fit. Be sure that your
HTML is valid!

Phew. Glance back at index.php now and, if not there already, make that it somehow links to,

at least, buy.php, history.php, logout.php, quote.php, and sell.php (or their
equivalents) so that each is only one click away from a user's portfolio!

23 <27

This is CS50.
Harvard University Fall 2012

And now the icing on the cake. Only one feature to go, but you get to choose. Implement at least
one (1) of the features below. You may interpret each of the below as you see fit; we leave all
design decisions to you. Just take care to make clear to your TF (as via an appropriately named
hyperlink in index . php) which feature you tackled. And be sure that your HTML is valid.

O Empower users (who're already logged in) to change their passwords.

O Empower users who've forgotten their password to reset it (as by having them register with
an email address so that you can email them a link via which to do so).

0 Email users "receipts" anytime they buy or sell stocks.

O Empower users to deposit additional funds.

For tips on how to send email programmatically, see:

https://manual.cs50.net/Sending Mail

Sanity Checks.

Before you consider this problem set done, best to ask yourself these questions and then go back and
improve your code as needed! Do not consider the below an exhaustive list of expectations, though,
just some helpful reminders. The checkboxes that have come before these represent the exhaustive
list! To be clear, consider the questions below rhetorical. No need to answer them in writing for us,
since all of your answers should be "yes!"

Ooodoooon

Is the HTML generated by all of your PHP files valid according to validator.w3.org?

Do your pages detect and handle invalid inputs properly?

Are you recording users' histories of transactions properly?

Did you add one (1) additional feature of your own?

Did you choose appropriate data types for your database tables' fields?

Are you displaying any dollar amounts to at least two decimal places but no more than four?
Are you storing stocks' symbols in your table(s) in uppercase?

As always, if you can't answer "yes" to one or more of the above because you're having some trouble,
doturnto cs50.net/discuss!

24<27

This is CS50.
Harvard University Fall 2012

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Open a terminal window (as via Menu > Programming > Terminal or within gedit) then execute
update50

to ensure you have the latest release of the appliance. Then execute:

cd ~/vhosts/localhost

And then execute:

1s

At a minimum, you should see html, includes, and templates. If not, odds are you skipped
some step(s) earlier! Next execute

mysqgldump -u jharvard -p pset7 > pset7.sqgl

in order to "dump" your MySQL database to a file called pset7.sql (so that we can re-create it on
our end). Input a password of crimson if prompted, then confirm that pset7.sql exists with 1s.

Then execute

submit50 ~/vhosts/localhost

and follow the on-screen instructions. If prompted for an "endpoint," input apps.cs50.net. If
prompted for a ‘"submit key" (as you were a few weeks back), visit
https://apps.cs50.net/settings/submit, logging in if prompted, then click the red
button, then highlight and copy your submit key, and then paste it into your terminal window, as
via Edit > Paste. (If pasting doesn't seem to work, simply type it out carefully!) Your submit key
should be cached by the appliance so that you shouldn't have to input it again if you re-submit this
problem set.

As always, that command will essentially upload your entire ~/vhosts/localhost directory to
CS50's servers, where your TF will be able to access it. The command will inform you whether
your submission was successful or not. And you may inspect your submission at
cs50.net/submit.

25<27

This is CS50.
Harvard University Fall 2012

You may re-submit as many times as you'd like; we'll grade your most recent submission. But take
care not to submit after the problem set's deadline, lest you spend a late day unnecessarily or risk
rejection entirely.

If you run into any trouble at all, let us know via cs50.net/discuss and we'll try to assist! Just
take care to seek help well before the problem set's deadline, as we can't always reply right away!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/7/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 7, your last!

26 <27

