Data Structures

Lucas Freitas

Data Structures

Linked lists

Stacks

Queues

Hash tables

Trees

Binary search trees (BST)
Tries

Data Structures

e Understand the conceptual description of
each, and why you would use each

Data Structures

e Understand the conceptual description of
each, and why you would use each

e Study and implement in C the most
common operations in each

Data Structures

e Understand the conceptual description of
each, and why you would use each

e Study and implement in C the most
common operations in each

e Review pointers and structs

Data Structures

Linked lists

Stacks

Queues

Hash tables

Trees

Binary search trees (BST)
Tries

Linked lists

e |nsert or remove elementsin O (1) if
the linked list Is unsorted

e Flexible length

e Remembertomalloc/free nodes!

Linked lists

typedef struct node

{
int n; < or another type you

struct node* next; wantto store
}

node;

2 —- [3 — NULL

Insert node

vold 1nsert(int wvalue)

{

2 3 — NULL

Insert node

vold 1nsert(int wvalue)

{

node* newnode = malloc(sizeof (node));

2 3 — NULL

Insert node

vold 1nsert(int wvalue)

{

node* newnode = malloc(sizeof (node));
newnode->n = value;

2 3 — NULL

Insert node

vold 1nsert(int wvalue)

{

node* newnode = malloc(sizeof (node));
newnode->n = value;
newnode->next = head;

2 3 — NULL

Insert node

vold 1nsert(int wvalue)

{

node* newnode = malloc(sizeof (node));
newnode->n = value;
newnode->next = head;

head = newnode;

H |-

2 3 — NULL

Delete node

Implement at home for practice!

5

7 N

2 3 — NULL

Delete node

Implement at home for practice!

—

2 3 — NULL

Delete node

Implement at home for practice!

—

2 3 — NULL

Delete node

Implement at home for practice!

5

7 N

2 3 — NULL

Delete node

Implement at home for practice!

5

7 N

2 3 — NULL

\1\ temp

Delete node

Implement at home for practice!

—

2 3 — NULL

B

Delete node

Implement at home for practice!

5

/

Data Structures

Linked lists

Stacks

Queues

Hash tables

Trees

Binary search trees (BST)
Tries

Stacks

Last In, First Out (LIFO)

typedef struct

{
int numbers [CAPACITY];
int size;

}

stack;

Push (array implementation)

bool push (int num)

{
if (s.size >= CAPACITY)

return false;

Push (array implementation)

bool push (int num)
{
1f (s.size >= CAPACITY)
return false;

s.numbers|[s.size] = num;

Push (array implementation)

bool push (int num)
{
1f (s.size >= CAPACITY)
return false;
s.numbers[s.size] = num;
S.size++;

Pop (array implementation)

int pop(void)
{
1f (s.size <= 0)
return -1;

Pop (array implementation)

int pop(void)
{
1f (s.size <= 0)
return -1;

S.size——;

Pop (array implementation)

int pop(void)
{
1f (s.size <= 0)
return -1;
S.size—-—;

return s.numbers[s.size];

Data Structures

Linked lists

Stacks

Queues

Hash tables

Trees

Binary search trees (BST)
Tries

Queues

First In, First Out (FIFO)

typedef struct

{
int head;

int numbers [CAPACITY];
int size;
}

queue;

Enqueue (array implementation)

bool enqueue (int num)

{
1f (g.size >= CAPACITY)
return false;

Enqueue (array implementation)

bool enqueue (int num)
{
1f (g.size >= CAPACITY)
return false;

g.numbers[g.size] = num;

Enqueue (array implementation)

bool enqueue (int num)
{
1f (g.size >= CAPACITY)
return false;
g.numbers[g.size] = num;
g.size++t;

Enqueue (array implementation)

bool enqueue \unt num)
{
1f (g.size >= CARACITY)
return false;
g.numbers[g.size] = nun:
g.size++t;

Why is that wrong?

enqueue
enqueue
enqueue

enqueue

(5
(7
(1
enqueue (4
(6
dequeue () ;

(1

SN—" \
~e

enqueue

Why is that wrong?

enqueue
enqueue
enqueue

enqueue

(5
(7
(1
enqueue (4
(6
dequeue () ;

(1

SN—" \
~e

enqueue

Why is that wrong?

enqueue
enqueue

enqueue

enqueue

(5
(7
(1
enqueue (4
(6
dequeue () ;

(1

SN—" \
~e

enqueue

Why is that wrong?

enqueue
enqueue

enqueue

enqueue

(5
(7
(1
enqueue (4
(6
dequeue () ;

(1

enqueue

Why is that wrong?

enqueue
enqueue
enqueue

enqueue

(5
(7
(1
enqueue (4
(6
dequeue () ;

(1

enqueue

Why is that wrong?

enqueue
enqueue
enqueue

enqueue

(5
(7
(1
enqueue (4
(6
dequeue () ;

(1

enqueue

Why is that wrong?

enqueue
enqueue
enqueue

enqueue

(5
(7
(1
enqueue (4
(6
dequeue () ;

(1

enqueue

Why is that wrong?

enqueue

4

enqueue

) ;

) ;

)
enqueue (4) ;
) ;

’

enqueue

’

(5
(7
enqueue (1
(4
(6
()7

dequeue

4

Enqueue (array implementation)

bool enqueue (int num)

{
1f (g.size >= CAPACITY)
return false;

Enqueue (array implementation)

bool enqueue (int num)

{
1f (g.size >= CAPACITY)
return false;

[e)

g.numbers[(g.size + g.head) % CAPACITY] = num;

Enqueue (array implementation)

bool enqueue (int num)
{
1f (g.size >= CAPACITY)
return false;

g.numbers[(g.size + g.head) % CAPACITY] = num;
g.size++t;

Dequeue

Implement at home!

Note on stacks and queues

e Can also be implemented using linked lists
e Practice the implementations at home!!!

e Be sure that you understand the differences
between the two!

Let's relax for 10 seconds with Pokemons!

Now back to data structures!

Data Structures

Linked lists

Stacks

Queues

Hash tables

Trees

Binary search trees (BST)
Tries

Hash tables

e Array of linked lists

e Hash function
o turns key (usually a string) into an index (int)
o good ones are deterministic and well distributed
o collisions (that's why we need the linked lists)

e Easy to check if a value is in the hash table
o spellchecker

Hash tables

[5. Adams |/
J. Adams c
[T. Heyward | /]

[J. Hancock |/}
[C. Braxion |@]

[J.Hant |/}
[C.Carol_|@]

[A.Cark @]
[B. Frankiin |/}

[J. Bartlett | @ [B.Gwinnett |@1—{ L Hat |/

@ N, s ON

[G. Clymer @]
[8. Harrison |/}

Data Structures

Linked lists

Stacks

Queues

Hash tables

IGCER

Binary search trees (BST)
Tries

Trees

Trees

e 3is 1's parent root

e 3is 2's child

CEVES CEVES

Data Structures

Linked lists

Stacks

Queues

Hash tables

Trees

Binary search trees (BST)
Tries

Binary search tree

e Right nodes have
"greater" values

Binary search tree (BST)

typedef struct node
{

int n;
struct node* left;

struct node* right;

J

node;

Find value in BST

bool find(int num, node* root)

{

Find value in BST

bool find(int num, node* root)

{
1f (root == NULL)
return false;

Find value in BST

bool find(int num, node* root)
{
1f (root == NULL)
return false;
if (num > root->n)
return find(num, root->right);

Find value in BST

bool find(int num, node* root)
{
1f (root == NULL)
return false;
if (num > root->n)
return find(num, root->right);
if (num < root->n)
return find(num, root->left);

Find value in BST

bool find(int num, node* root)
{
1f (root == NULL)
return false;
if (num > root->n)
return find(num, root->right);
if (num < root->n)
return find(num, root->left);
return true;

Data Structures

Linked lists

Stacks

Queues

Hash tables

Trees

Binary search trees (BST)
Tries

Tries (everyone's favorite)

e Tree of arrays
e [ast to lookup values
e Uses a lot of memory

e Easy to filter words

Tries

typedef struct node
{

bool 1s word;
struct node* children|[VALUES];

J

node;

Tries (for our spellicheck)

typedef struct node
{

bool 1s word;
struct node* children([27];

J

node;

Tries (for this review session)

typedef struct node
{

bool 1s word;
struct node* children[2];

J

node;

Tries

NULL NULL \ Is_word

children

Tries

e add ("a"); \ \

NULL NULL

Tries

T

NULL

N

NULL NULL

Tries

e add ("ba"); \
a b

N N

NULL NULL

NULL NULL

NULL

Tries

e find ("b"); \
a b

N N

NULL NULL

NULL NULL

NULL

Tries

e find ("ba"); \
a b

N N

NULL NULL

NULL NULL

NULL

Huffman Coding!!!!

e Save memory

e Frequent characters shouldn't take as much
memory as rare ones

Huffman tree

typedef struct node
{

char symbol;

int frequency;
struct node* left;
struct node* right;

J

node;

Building huffman tree

1.

Pick two trees/nodes in forest with lowest
frequencies (use lowest ASCII value is there

IS a tie);

Turn them into a parent tree (combined
frequencies) and replace the two children
with the parent in the forest;

Repeat 1 and 2 until there is only one tree in
the forest.

Example - Huffman tree for ZAMYLA

Z - frequency 1
A - frequency 2
M - frequency 1
Y - frequency 1
L - frequency 1

o
. Q /e\
o0

What does 110100100 represent? L M

Good luck!!!!

Week 7

Rob Bowden

Topics

* Bitwise operators

* Buffer overtlow attack
* CS50 Library

* HTML

* HTTP

* CSS

Bitwise Operators

o & ° S>>

o A o ~

~ Bitwise Not

Reverses all bits
~1101101 =0010010

Frequently useful if we want “all bits but one”
equal to one, as we’ll see shortly

| Bitwise Or

1010

| 1100
= 7777

| Bitwise Or

1010
| 1100
1110

| Bitwise Or

‘A’ 10x20 =7
‘a’ 10x20 =7

| Bitwise Or

‘A’ 10x20 = ‘a’
‘a’ 10x20 =&’

& Bitwise And

1010

& 1100
= 7777

& Bitwise And

1010
& 1100
= 1000

& Bitwise And

‘A’ & ~0x20 =7
‘a’ & ~0x20="7

& Bitwise And

‘A’ & ~0x20="A°
‘a’ & ~0x20="A’

A XOR

1010

A 1100
7

A XOR

1010
A 1100
= 0110

A XOR

‘AT A0x20=7
‘a’ M 0x20 =7

A XOR

A’ M0x20 =*a’
‘a’ A0x20 ="A’

<< Left Shift

00001101

<< 3
— 999999999

<< Left Shift

00001101
<< 3
= 01101000

<< Left Shift

00001101 13
<< 3 << 3
= 01101000 = 104

“x <<y’ roughly means x * 2y

>> Right Shift

01101000

>> 3
— 999999999

>> Right Shift

01101000
>> 3
= 00001101

<< Left Shift

01101000 104
>> 3 >> R
= 00001101 = 13

“x >>y” roughly means x / 2y
(What do I mean by “roughly”?)

Buffer Overflow Attack

What was wrong with this function?

vold foo(char* bar)

{
char c[12];

memcpy(c, bar, strlen(bar));

=
E
o
O
S
:
)]

Unallocated Stack Space

c[0]

Char c[12]

Saved Frame pointer

Return Address

Parent Routine's Stack

sossalppy Alowap

Unallocated Stack Space
Address
0x80C03508
I A A A A
A A A A
=
= M
s A A A A 3
4 <
:
@
A A A A §
A A A A
Little Endian
0x80C03508
\x08 | \x35 | \xCO | \x80 A
Parent Routine's Stack

CS50 Library

Getlnt, GetString, etc.

typedet char* string;

GetString, abridged

/] ...
while ((c = fgetc(stdin)) != '\n' && c != EOF)
{
// grow buffer if necessary
if (n + 1 > capacity)
{
/] ...

buffer = realloc(buffer, capacity * 2);

}

// append current character to buffer
buffer[n++] = c;

Getlnt

while (true)
{
string line = GetString();
if (line == NULL)
return INT MAXj;

int n; char c;
if (sscanf(line,

{
free(line);
return n;

}

else

{
free(line);

printf ("Retry: ");
}

HTML

HyperText Markup Language

Defines the structure and semantics of webpages
(not the style)

HTML

<!DOCTYPE html>

<html>
<head>
<link href="styles.css" rel="stylesheet"/>
<script src="scripts.]js"></script>
<title>hello, world</title>
</head>
<body>
hello, world

</body>

</html>

HTML

<form action="http://www.google.com/search" method="get">

HTTP

HyperText Transfer Protocol
The protocol of the World Wide Web!!

Transters hypertext,1.e. HTML, but also images,
stylesheets, and anything else

HTTP Request

GET /search?g=quick+brown+fox HTTP/1.1
Host: www.google.com

HTTP Response

HTTP/1.1 200 OK

Followed by whatever I requested

HTTP Status Codes

e 200 OK
403 Forbidden
* 404 Not Found

500 Internal Server Error

TCP/IP

HTTP 1s built on top of TCP/IP

If HTTP 1s the language of the World Wide
Web, IP is the language of the Internet (and
more)!

TCP/IP

Every computer on the internet 1s addressable
through an IP address. This includes the servers
that host your favorite websites.

DNS lets us remember “google.com” instead of
something like 74.125.224.72

TCP/IP

In addition to IP addresses, every computer has a
number of ports that different applications can
listen on so that the applications don’t interfere
with one another.

This 1s part of what the “TCP” part of TCP/IP
provides us.

By detfault, HTTP uses port 80. Other services
use other ports, such as SMTP using port 25 for

CSS

Cascading Stylesheets

Used to style webpages (remember, HTML 1s not
meant for styling).

1)

CSS

Three places to put your styling:

Inline
<body style="text-align: center;">

2) Between <style> tags

3) In a separate file, which 1s then “linked” into one or more
HTML documents

<link href="styles.css" rel="stylesheet”/>

CSS

body
{

}
#footer

{

text-align: center;

font-size: smaller;
font-weight: bold;
margin: 20px;

text-align: left;

QQQPERTY or
sCSe

PHP and SQL

Ali Nahm

HP: —ypertext
reprocessor

® Server-side scripting language

® Let’s us develop the backend, or logical

underpinnings, of our website

<!php Syntax !>

® all PHP code must start with <?php and
end with ?> tags

® all variables start with $

® you do NOT have to note the variable

type in your declaration like in C!

® when you're declaring

® when you're referring

Weakly Typed
. Variables

Weakly typed means you can freely switch
and compare variables between types

<?php

Snum int = 1;
Snum string = "1";
Snum float = 1.0;

2>

® Even though you don’t specify the type,

there are still variable types!!!

To Equals or Not to Equals?

== checks across types

=== strict equality, value AND type must match
<?php

Snum int = 1;
Snum string = "1";

1f (Snum int == Snum string)
echo "Will be echoed";

1f ($Snum int === Snum string)
echo "Won't be echoed"”;
>

String Concatenation

Use the « operator!

<?php

Sstringl = "CAT";

Sstring2 = "DOG";

$show name = S$stringl . " " . $Sstring2;

// this will print "CAT DOG"
echo $show name;

// this will print "CAT DOG" via string interpolation
echo ("$stringl $string2");
P>

Arrays

® regular arrays similar to C

® associative arrays

Arrays

® associative arrays

Regular Arrays

<?php

// creating an empty array

Snumber = [];

2> indices 0 |

values

Regular Arrays

<?php

// creating an empty array
Snumber = [];

// like in C, changes at locations 1 and 2
sSnumber [0] = 6;

2> indices 0

values 6

Regular Arrays

<?php

// creating an empty array
Snumber = [];

// like in C, changes at locations 1 and 2

Snumber[0] = 6;
Snumber[1] = 4;

2> indices 0

values 6 4

Regular Arrays

<?php

// creating an empty array
Snumber = [];

// like in C, changes at locations 1 and 2
snumber [0] = 6;
Snumber [1] 4;

// like in C, access at specific locations 1 and 2
// this will print "o6"
echo Snumber[0];

2> indices 0 |

values 6 4

... Regular Arrays

// creating an empty array
Snumber = [];

2> indices 0 |

values

... Regular Arrays

// creating an empty array
Snumber = [];

// NOT like in C, you can just append to the end of

// an array! (pushes 1, then 2, then 3 into array)
Snumber[] = 1;

2> indices 0 | 2

values |

... Regular Arrays

// creating an empty array
Snumber = [];

// NOT like in C, you can just append to the end of
// an array! (pushes 1, then 2, then 3 into array)
Snumber[] = 1;

Snumber[] = 2;

2> indices 0 | 2

values |)

... Regular Arrays

// creating an empty array
Snumber = [];

// NOT like in C, you can just append to the end of
// an array! (pushes 1, then 2, then 3 into array)

(
Snumber[] = 1;
Snumber[] = 2;
Snumber[] = 3;

// this will print out "2"
echo Snumber[1];

2> indices 0 | 2

values |) 3

Arrays

® regular arrays similar to C

Associative Arrays

® An array that uses strings as “keys” for
each location in an array (aka indices)
indices

values

Associative Arrays

<?php
stf = [1;
Stf["name"] = "Ali";

Stf["calories eaten"] = 1000;
Stf[("likes"] = ["pig", "milk"];

7>

indices

values IOOO ["pj—g"/ "milk"]

Associative Arrays

fgelsle
Stf = [1;

// alternatively

Stf = [
"name" => "Ali",
"course" => "EC10",
"likeg" => ["pig", "milk"]
17
2>
indices
values IOOO ["pj—g"/ "milk"]

Loops

We can do the same as we did in C....
<?php

Spsets = [1, 2, 3, 4, 5, 6, 71;
for (Si = 1; S$Si <= 7; S$i++)
doProblemSet (51) ;

print ("DID ALL THE PROBLEM SETS!"™);
0>

... or we can use foreach loops if we don’t know

the numerical indices!
<?php

Spsets = [1, 2, 3, 4, 5, 6, 7];
foreach (Spsets as Spset num)
doProblemSet ($pset num);

print ("DID ALL THE PROBLEM SETS!");
?>

v

v

v

v

Useful Functions

require (pathtofile) statement includes PHP code from the the
specified file and evaluates it. Often used to make libraries, etc.

echo does the same thing as print.
exit stops the further execution of any code.
empty checks if a variable is empty. These are considered empty:

> 0O 00 "0" null false T[] uninitialized variable

REALLY good idea to check out the functions you used in pset?!

Global Scope

<?php

function aFunction ($1i)

{
Si++;
echo Si . "\n";

J

foun (S1i = 0; Si < 3; Si++)
echo $Si;

aFunction (S1i) ;

echo $Si;
>

Global Scope

<?php

function aFunction ($1i)

{
Si++;
echo Si . "\n";

J

foun (S1i = 0; Si < 3; Si++)
echo $Si;

aFunction (S1i) ;

echo $Si;
>

Global Scope

fgelale

function aFunction ($1i)

{
Si++;
echo Si1i . "\n";

J

foun (S1i = 0; Si < 3; Si++)
echo $Si;

aFunction (S1i) ;

echo $Si;
>

Global Scope

one exception: functions

fgelale

function aFunction ($1i)

{
Si++;
echo Si . "\n";

J

for (Si = 0; S$i < 3; Si++)

echo Si;

When $i is
3, we exit |——> (51) \This is
1)/

the loop.FUnction local to the

loop.

echo $Si;
>

Global Scope

<?php
function aFunction (Si)

{ . .

echo $i . "\n"; the function.

J

echo $i . "\n";

for ($i = 0; S$Si < 3; $i++)

aFunction ($1i) ;
—

echo $i;

0>

PHP and HTML

» PHP is used to make web pages dynamic.

» With just HTML we serve the same static page to all users.

» PHP gives us the power to alter the page’s HTML prior to
loading, based on the users actions, who they are, logic we've
written up, etc.

<?= "You are logged in as " . $name ?>

/ \

You are logged in as Joseph Ong. About me. You are logged in as Tommy MacWilliam. About me.

What does your TF do well? What does your TF do well?
Funny guy, answers questions w can be funnier,

Generating HTML

® TWO ways that work

<?php <?php for($i = 0; i < 5; i++): 2>

for ($1 = 0; $i < 5; S$i++) <img src='<?= memes[$i] ?>'/>
print ("");

<?php endfor; ?>

\ /

0>

Forms and Requests

® We can pass data from HTML forms to

PHP files

® If we're using a form, then...

<form ="printName.php" ="get">

® action attribute tells us where to send

the data

® method attribute tells us how to send

(cet or post) the data

GET request

<form action="printName.php" method="get'">

First Name: <input type="text" name="firstname"/>

Last Name: <input type="text" name="lastname"/>
</form>

First name: ‘david

Last name: malan

<?php
echo $ GET["firstname"]; < $_G ET al”l"a)’
echo $ GET["lastname"];

(indexed by name attribute)
?>

) cloud.cs50.net/~youjustlostthegame/printname.phg?firstname=dav d&'astname'—malar‘l

davidmalan sent in URL

POST request

<form action="printName.php" method="post'>

First Name: <input type="text" name="firstname"/>

Last Name: <input type="text" name="lastname"/>
</form>

First name: ‘david

Last name: malan

?ph
;ciop$_POST ["firstname"]; < $_P°ST al”ra)’

echo $§ POST["lastname"];

- (also indexed by name attribute)
2>

) cloud.cs50.net/~youjustlostthegame/printname.php

davidmalan

not sent in URL

POST and GET equally
insecure!

» It's still sent in plaintext, regardless. One just shows up in
the URL, while the other doesn't.

Request URL: https://twitter.cog/sessions?phx=1
Request Method: POST

Y Form Data

sessionjusername_or _emaill:

session|password]: thisisaca

scribe log: ["{\"event_name\":\"web:front:login_callout:form:login_click
ont\",\" _category_\":\"client_event\",\"ts\":1321171469570}"]

29 29 .Q .

$ SESSION

» Used to store information about the current HTTP
session.

// example from pset’7 getting user’s cash

Srows = query ("SELECT cash FROM users WHERE id = ?",

tructured (Juery | anguage

® SQL is a programming language designed

for managing databases.

Databases

» A database is a collection of tables.

=1 &

2NN

i oerver. 10calnost alabaosT. JUlyy

¥T Structure L] SQL , Search Query « Export 2 Operations

Table Action 9 Type Collation Size Overhead

history Browse ¥ Structure % Search #t Insert 1 Empty & 2 InnoDB latin1 swedish ¢ci 16.0 KiB

portfolios Browse ¥t Structure Search #*t Insert Empty & 0 InnoDB latin1_swedish_ci 16.0 KiB

Each table represents a collection of similar objects.
For example, a table of users:

| — id username hash cash

#c Copy @ Delete 1 caesar $18Y01fprd3$BA4|QZMmM2rmb46EgU7RwWN/ 10000.0000
#c Copy @ Delete 2 chartier $18NhaqO3f8$g4zPyTt2KSKdD7HNMI/nKO 10000.0000
#c Copy @ Delete 3 guest $183urYOm7mEPAsveAdEcMgzlyxSKF4csO 10000.0000

& Edit 3
& Edit 3
&’ Edit 3

—.
_a
—\
_a
—1
_4
—

Why are they useful?

» Permanent store for objects, way to track and
manage those objects easily -- think of something
like user accounts.

» Very easy paradigms, most essential in SQL are

» SELECT
» INSERT
» DELETE
» UPDATE

SELECT

» Select rows from a database matching a criterion.

Column Type

+ Options
1 classid int(16) P

classid classname awesome slogan

2 classname varchar(255) &’ Edit }c Copy & Delete 1234 CS50 1 Wanna Learn HTML?

- ——— =
awesome tinyint(1) & Edit %t Copy @ Delete 4321 STAT110 1 FIND ALL THE MOMENTS

4 slogan varchar(255)

SELECT * FROM classes WHERE awesome = '1';

+ Options
— [- classid classname awesome slogan

&’ Edit #c Copy @ Delete 1234 CS50 1 Wanna Learn HTML?
&’ Edit #c Copy @ Delete 4321 STAT110 1 FIND ALL THE MOMENTS

SELECT

» How does this look like in code? Integrate PHP!

+ Options
classid classname awesome slogan

#c Copy @ Delete 1234 CS50 1 Wanna Learn HTML?

#c Copy @ Delete 4321 STAT110 1 FIND ALL THE MOMENTS

quit with error message if query didn't work

//construct sgl string
Srows = query ("SELECT * FROM classes WHERE awesome = (AL
if (Srows === false)

apologize ("Query failled. Sadface.");

foreach (Srows as Srow)

{

echo Srow["classname”"] . ": " . Srow["slogan"] . "
";

}

?>

SELECT

» How does this look like in code? Integrate PHP!

+ Options
classid classname awesome slogan

#c Copy @ Delete 1234 CS50 1 Wanna Learn HTML?

#c Copy @ Delete 4321 STAT110 1 FIND ALL THE MOMENTS

//construct sgl string

Srows = query ("SELECT * FROM classes WHERE awesome = '1'");
if (Srows === false)
apologize ("Query failed. Sadface.");

——Ffeoreach (Srows as Srow)

{
eche—S$xoew["classname"] . ": " . Srow["slogan"] . "
";

}

?>

CS50: Wanna Learn HTML.?

SELECT

» How does this look like in code? Integrate PHP!

+ Options
4_‘|'_> classid classname awesome slogan

&’ Edit ¥t Copy @ Delete 1234 CS50 1 Wanna Learn HTML?
$row &’ Edit 3"5 Copy & Delete 4321 STAT110 1 FIND ALL THE MOMENTS

<?php

//construct sgl string

Srows = query ("SELECT * FROM classes WHERE awesome = '1'");
if (Srows === false)
apologize ("Query failled. Sadface.");

—+Ffeoreach (Srows as Srow)

{
eche—S$xew["classname"] . ": " . Srow["slogan"] . "
";

}
7>

CS50: Wanna Learn HTML.?

STATI110: FIND ALL THE MOMENTS

SQL Vulnerabilities

OH, DEAR - DID HE
BREAK SOMETHING?

HI, THIS 1S

YOUR SON'S SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts; -~ 7

~ OH.YES. UTTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

AND I H(PE

- YOUVE LEARNED
¢ TOSANMIZE YOUR
DATARASE INPUTS.

SQL Injection

» How does this work?

fgelsle
Srows = query ("SELECT * FROM users
WHERE username = '{$ POST['username']}"'
AND password = '{$ POST['password']}");
if ($Srows === false)
apologize ("Sadface.");

if (count (Srows) > 0)

{

$ SESSION["id"] = Srows[0]["1d"];
}
else
{
apologize ("Sadface.");

J
7>

SQL Injection

» How does this work?

<?php

Srows = query ("SELECT * FROM users
WHERE username = '{$ POST['username']}'
AND password = A) ;
if (Srows === false)
apologize ("Sadface.");

if (count (Srows) > 0)

{

$ SESSION["1id"] = Srows[0] ["id"];
}
else
{
apologize ("Sadface.");

SQL Injection

» How does this work?

<?php

Srows = query ("SELECT * FROM users
WHERE username = '{$ POST['username

AND password = ');T

if (Srows === false)
apologize ("Sadface.");

if (count (Srows) > 0)

{

$ SESSION["1id"] = Srows[0] ["id"];
}
else
{
apologize ("Sadface.");

} 1

always true

so, returns ALL the rows

Solution - PDO (question marks!)

<?php

Srows = query ("SELECT * FROM users

WHERE username =

AND password = ", $ POST["username"],

$ POST["password"]) ;

if (count (Srows) > 0)

{

S SESSION["id"] = Srows[0]["1d"];
}
else
{
apologize ("Sadface.");
J
7>

note: for one, this is still pretty terrible because you should never, ever, store
passwords in plaintext in your database... hash first.

That quiz 1 review

by Oreoluwatomiwa Oluwole O. A.
Babarinsa a.k.a Ore B.

JavaScript

Or : How | learned to stop worrying and love
client-side scripting

JavaScript is kinda cool
... l guess

JavaScript is ...

e useful for client-side scripting

o Do you really want to have to ping back to the server
to handle *every* user interaction

o Also, you can't animate a button using only server-
side scripting

Things JS also is...

e dynamically-typed
o The types of your variables are only checked when
you run the program

e similar in syntax to C and PHP
o You have all your good buddies:if, while,
for, x++, etc

A little bit of JS

<!DOCTYPE html>
<html>
<head>
<script src="jquery.js"></script>
<script type="text/javascript">
var x = 10;
X++;
console.log (x);
</script>
</head>
<body>
<p>Yo</p>
</body>
</html>

JavaScript Arrays

e you would declare an array as such

var array = [1, 3, 51;

e and access it like this

arrayl[l] ==

C arrays vs. JS arrays

e InJS, array.length givesyou backthe
length of an array.

e Unlike C, arrays are dynamically sized!

o You can add elements to them without worrying
about writing out of bounds of memory

Guilty by Association

e JavaScript lets you use objects as
associative arrays, that let you store
key/value pairs

e Declared using {}

var assoc = { text : "hello" };
assoc["name"] = "Ore";
assoc.name != "Joe";

for (var slide in pres)...

e S0, you've written approx. 10 quadrillion
loops where all you do is operate on each
element in a data structure

e JS makes this easy using the following :
for (var key in data){ ... }

A bit more about for

e If data was an object, key would be key,
such that you'll get some corresponding
value if you utilize data [key]

e You however, don't want to use this for
plain old arrays.

Objects!

e Objects are a great way in JS to encapsulate
related data

var obj = { name : "Ore"};
ob7.age 19;

e You can switch between array syntax, and
object syntax whenever you want with an

exception
o obj["key with spaces"] can't accessed with
object syntax

Scoping it out

e In one of JavaScript's more ... controversial
features, it has a markedly different

approach to scope

o IFavariableis declared using var thenits scopeis
limited to the current function (however, not the
current loop or if statement!)

o without var : Limited Scope, What Limited Scope?
It's global!

Document Object Model

e The DOM (Document Object Model) gives

you a programmatic way to manipulate
HTML as objects

o DOM isn't just available in JS! Many other languages
have libraries that let them leverage the DOM.

e |t's objects all the way down!
o Every element is an object
m attributes are properties of the object
m nested tags are children of a parent tag

<!DOCTYPE html>

<html>
<head>
<title>hello, world</title>
</head>
<body>
hello, world
</body>
</html>

(document)

\J

html

e

head

title

J

hello, world

N

body

Y

hello, world

Where's all the DOM?

e JS loads the DOM into the document object

® document.getElementById ("i1d")
o The element with the attribute id ="id"

Events

e the DOM lets you attach events to elements
o events are either some user interaction, or some
state change of the page

e For each of these events, we can attach a
function that will be executed at that time.
We can call this function an event handler

The Events!

e [0 attach event handlers, you can simply set
the value of an HTML attribute for a tag such
as onclick equal to a Function call

<button onclick="explode () ">
Don't Touch
</button>

e You can also grab the DOM element and
attach the event handler that way

JQuery

e jQuery provides many benefits over basic JS, including
greater concision.

e |t also provides a huge library of cross-browser
functions that allows you to do to less work

e jQuery provides a slick, syntactically less verbose way
of access DOM elements using selectors

o Same selectors as CSS

jQuery Selectors

e |eft's try to select an element by id!
o in jQuery this is :
S("#rock")

e Other Selectors
o $(".class") -allelements of agiven class
o $("element™) -allelements with a given tag
name

jQuery Event Handling

e |Query also gives you a cleaner way of
setting up events

<script>
S (document) .ready (function () {
S('#myid') .click (function () {

b)) s

b) g
<script>

Ajax

e One of the coolest sounding web
technologies out there
o Asynchronous JavaScript And XML

e Allows you make dynamic HT TP requests
without reloading the page!

e Usually has *nothing* to with XML anymore

How does | Ajax?

e In general though you'll need the following

o Aurlto send the request to

o an object containing any data you want to send in
your request

o A Function to handle the data you get back

Ajax Example

$ (document) . ready (function () {
// load data via ajax on click
S ('#greeter') .click (function () {
S.ajax ({
url: 'greetings.php',
type: 'POST',
data: {1},
success: function (response) {
S('#target') .text (response) ;

HTTP Status Codes

e So let's say you sent your Ajax request, but
something bad happened to it, you wouldn't
be able to tell just by the state of the Ajax
request.

e S0, Ajax uses HTTP status codes (they
aren't specific to Ajax) to report what
happened to the request.

The Actual HTTP Response Codes

200 : All Green

301 : Moved Permanently

401 : UNAUTHORIZED. INTRUDER ALERT.
403 : Forbidden.

404 : Not Found

Design

Or : How to make the Functional into the
Usable

Design

e It's all about asking the big questions about

your applications

o Who'll be using this app?

o What will they be using it for?
o What do my users care about?
o What DON'T they care about?

Make it Effortless

e Your User should have to do as little work as

possible to leverage your core functionality

o If I'm using your mobile waffle recipe app, | shouldn't
be spending more time trying to find how to make
blueberry waffles than actually making them

o Also, | shouldn't find syrup suggestions for chocolate
waffles when I'm looking for how to make blueberry
waffles

e Basically, using your applications should be
easy for someone who knows nothing about

Its Internals.

Good Practices
e Paper Prototype

o Even if everyone else goes digital, software
designers will still be sketching out things on paper

o It gives the ability to quick sketch out designs or
workflows, show it around to friends, redo portions
on the fly, etc.

e Focus Group
o Having a group of people who will give honest
feedback about your App is critical, also they may
help catch bugs!

