
Technical Interview Workshop Problems

Kenny Yu

November 4, 2012

Disclaimer. I compiled these problems mainly through searching online and CS124. Your
interview preparation should not be limited to this list. It is simply to give you a flavor of
the kinds of problems you might see in an interview. I will not provide solutions to these
problems–the fun is in figuring out these problems yourself!

Directions. For each of these problems, solve the problem in your most familiar language
with the most efficient algorithm (in terms of time and space complexity), and state the time
and space complexity of your algorithm.

1 Data Structures

1. Doubly Linked Lists. In your most comfortable programming language, implement
a doubly linked list. What is the time complexity of inserting to the head of the list?
To the tail of the list? To somewhere in the middle of the list? Removing from the
head? Removing from the tail? Removing from the middle?

2. Reverse a Linked List. Given a pointer to the first node of a singly linked list, write
a procedure to reverse the linked list. Do this recursively and iteratively. What is the
space and time complexity of each implementation? Which way is better, and why?

3. Cycle in a Linked List. Given a pointer to the first node of a single linked list,
detect if there exists a cycle in the linked list. What is the time complexity of your
implementation?

4. Queues and Stacks. Implement a queue using stacks. Implement a stack using
queues.

5. Valid Binary Search Trees. A binary tree rooted at r is a binary search tree if for
all nodes u in the left subtree of r, we have u r, and for all nodes v in the right
subtree of r, we have r v. Given a binary tree, determine if the binary tree is a
binary search tree.

1

6. Merge k sorted lists. Given k sorted lists, each of length n, provide an algorithm
to merge the k sorted lists into a single list of length kn. What data structure might
you want to use? What is the time complexity of your solution?

2 Bitwise Operators

1. Powers of 2. Write a function that determines if a positive integer n is a power of 2.

2. Number of one bits. Given a 32-bit unsigned integer n, write a function to return
the number of one-bits in the binary representation of n.

3. Bit Masking. Given a string containing only lower case letters from the English
alphabet, output the letters that are not present in the string. How much space are
you using? Time?

4. Division. Implement integer division without using multiplication or repeated sub-
traction (i.e. to divide n by d, you may not repeatedly subtract off d from n).

5. Absolute Value. Without using subtraction, write a function that computes the
absolute value of two integers x and y.

3 Greedy, Divide & Conquer, Dynamic Programming

1. Making Change in US Currency. Given an amount n in cents, determine the
minimum number of coins needed to make change for n in US currency p1, 5, 10, 25
cents).

2. Making Change in an Arbitrary Currency. Given an amount n in cents, and a
currency system with m different coins valued at c1, c2, c3, ..., cm cents, determine the
minimum number of coins needed to make change for n in this currency system.

3. Maximal Subarray. Given an array of n integers, determine the maximum sum that
can be generated by a continuous subarray of the input array. For example:

1, 2, 3, 4 Ñ 1 � 2 � 3 � 4 � 10

2, 3,�1,�3 Ñ 2 � 3 � 5

�1, 5, 100,�1000 Ñ 5 � 100 � 105

�1,�2,�3,�4 Ñ 0

empty Ñ 0

1000, 2000,�1, 3000 Ñ 1000 � 2000 � 1 � 3000 � 5999

2

4. Stocks. Given an array of n integers representing the price of a stock over the course
of n days, determine the maximum profit you can make if you can buy and sell exactly
1 stock over these n days. Provide a divide & conquer algorithm, and a dynamic
programming algorithm. Which is better? What is the time and space complexity for
both solutions?

5. Longest Path in a Graph. Given a weighted directed acyclic graph G � pV,Eq
where edges have associated positive weights, compute the length of the longest path
in the graph.

6. Interval Scheduling Problem (Tardos, 4.1). We have a set of requests t1, 2, ..., nu;
the i-th request corresponds to an interval of time starting at spiq and finishing at
fpiq. A subset of the requests is compatible if no two of them overlap in time. Write
a function that when given the array of start times s and finish times f , computes the
largest subset of requests that are compatible.

7. Weighted Interval Scheduling Problem (Tardos, 6.1). This is similar to the In-
terval Scheduling Problem, except now each request has an associated value or weight
vi ¡ 0. Write a function to compute a compatible subset of the intervals of maximum
total value.

8. Knapsack Problem (Tardos, 6.4). We are given n items t1, 2, ..., nu, and each item
has a given nonnegative weight wi and given value vi for i � 1, ..., n. We are also given
a bound W on the total weight. Write a function that when given W and the array of
weights and values, computes the subset of items that maximizes the total value and
has total weight not exceeding W .

9. Rod-Cutting Problem (CLRS, 15.1). Serling Enterprises buys long steel rods and
cuts them into shorter rods, which it then sells. Each cut is free. The management of
Serling Enterprises wants to know the best way to cut up the rods. We assume that we
know, for i � 1, 2, ..., the price pi in dollars that Serling Enterprises charges for a rod
of length i inches. Rod lengths are always an integral number of inches. Given a rod
of length n inches and a table of prices pi for i � 1, 2, ..., n determine the maximum
revenue obtainable by cutting up the rod and selling the pieces. Note that if the price
pn for a rod of length n is large enough, an optimal solution may require no cutting at
all.

4 Miscellaneous Questions

1. atoi (ASCII to Integer). Implement the function int atoi(char *str) that when
given a string str, returns the numeric value of this string. For example, atoi("42")
== 42, atoi("-35") == -35. You may assume that str contains only numeric char-
acters and possibly a leading negative sign.

3

2. Reverse a String. Write a function that when given a string char *str, reverses
the string in place.

3. Needle in Haystack. Given a string needle and string haystack, return TRUE if
needle is a substring of haystack, otherwise return FALSE.

4. Shuffle. Given an array of n integers, write a function shuffle that when given the
array, shuffles the array in place such that all n! permutations of the n integers are
equally likely. You may assume that you have a random number generator that when
given a non-negative integer i 232, can generate integers in the range r0, iq such that
any integer in this range is equally likely. Prove that your algorithm generates every
permutation with equal probability.

5. Sorting. In your most comfortable programming language, implement merge sort,
quick sort, insertion sort, and selection sort.

6. Find repeat. You are given an array of n integers from the interval r0, n� 2s. By the
pigeonhole principle, there exists at least one integer i in this interval that is repeated
in this array. Write a function that when given an array of this form, returns any
number that is repeated in the array. Can you do this linear time and constant space?

7. Dutch Flag Problem. Given an array of n integers and two numbers low and high,
partition the array in place such that all entries v appear in the array such that all
entries such that v low appear first (in any order), followed by all entries such that
low v high (in any order), followed by all entries such that v ¡ high (in any
order).

8. Two-Sum. Given an array of n integers and a target integer t, return TRUE if there
exists 0 ¤ i j n such that aris � arjs � t, otherwise return FALSE.

9. Three-Sum. Given an array of n integers and a target integer t, return TRUE if
there exists 0 ¤ i j k n such that aris � arjs � arks � t, otherwise return
FALSE.

10. Exponentiation. Write a function that when given non-negative integers n and m,
returns nm. What is the time complexity of your algorithm?

11. Square Root. Write a function float sqrt(float n, float epsilon) that when
given some input float n and float epsilon, returns a float m, the square root approxi-
mation of n such that |?n� m| epsilon.

12. Largest Prime Factor. Given a positive integer p ¥ 2, write a function that returns
the largest prime factor of p. What is the time complexity of your algorithm?

4

