
1

Problem Set 2: Crypto

This is CS50. Harvard University. Fall 2013.

Table of Contents

Objectives ... 1
Recommended Reading ... 2
diff pset2 hacker2 ... 2
Academic Honesty .. 2

Reasonable .. 3
Not Reasonable ... 3

Scores ... 4
Shorts .. 5
Getting Started ... 5
Late Day ... 6
Passwords Et Cetera .. 8
How to Submit .. 11

Step 1 of 2 .. 11
Step 2 of 2 .. 11

due Thu 9/26 at noon

To receive a late day (that extends your deadline until Fri 9/27 at noon), you must
complete Late Day no later than Wed 9/25 at noon.

Questions? Head to cs50.net/discuss1 or join classmates at office hours2 !

Objectives

• Better acquaint you with functions and libraries.

• Allow you to dabble in cryptanalysis.

1 https://www.cs50.net/discuss
2 https://www.cs50.net/ohs

https://www.cs50.net/discuss
https://www.cs50.net/ohs
https://www.cs50.net/discuss
https://www.cs50.net/ohs

Problem Set 2: Crypto

2

Recommended Reading

• Pages 11 – 14 and 39 of http://www.howstuffworks.com/c.htm.

• Chapters 7, 8, and 10 of Programming in C.

diff pset2 hacker2

• Hacker Edition challenges you to handle extra whitespace in inputs.

• Hacker Edition challenges you to crack actual passwords.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The
course recognizes that interactions with classmates and others can facilitate mastery of
the course’s material. However, there remains a line between enlisting the help of another
and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on
problem sets is not permitted except to the extent that you may ask classmates and others
for help so long as that help does not reduce to another doing your work for you. Generally
speaking, when asking for help, you may show your code to others, but you may not view
theirs, so long as you and they respect this policy’s other constraints. Collaboration on
quizzes is not permitted at all. Collaboration on the course’s final project is permitted to
the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers
reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not
commit it until you solicit and receive approval in writing from the course’s heads. Acts
considered not reasonable by the course are handled harshly. If the course refers some
matter to the Administrative Board and the outcome is Admonish, Probation, Requirement
to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local
sanctions on top of that outcome that may include an unsatisfactory or failing grade for
work submitted or for the course itself.

http://www.howstuffworks.com/c.htm

Problem Set 2: Crypto

3

Reasonable

• Communicating with classmates about problem sets' problems in English (or some
other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or
even online, as by viewing, compiling, or running his or her code, even on your own
computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,
provided that those snippets are not themselves solutions to assigned problems and
that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that
he or she might help you identify and fix a bug.

• Sharing snippets of your own code on CS50 Discuss or elsewhere so that others might
help you identify and fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,
and for solutions to technical difficulties, but not for outright solutions to problem set’s
problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode
but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor
does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before
(re-)submitting your own.

• Failing to cite (as with comments) the origins of code or techniques that you discover
outside of the course’s own lessons and integrate into your own work, even while
respecting this policy’s other constraints.

• Giving or showing to a classmate your solution to a problem set’s problem when it is
he or she, and not you, who is struggling to solve it.

Problem Set 2: Crypto

4

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your
own.

• Providing or making available solutions to problem sets to individuals who might take
this course in the future.

• Redeeming or attempting to redeem someone else’s code for a late day.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the
quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed
snippets.

• Submitting the same or similar work to this course that you have submitted or will submit
to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a
job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution
on it.

Scores

Your work on this problem set will be evaluated along four axes primarily.

Scope
To what extent does your code implement the features required by our specification?

Correctness
To what extent is your code consistent with our specifications and free of bugs?

Design
To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or
logically)?

Style
To what extent is your code readable (i.e., commented and indented with variables
aptly named)?

Problem Set 2: Crypto

5

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily
submit this and all other problem sets to be eligible for a satisfactory grade unless granted
an exception in writing by the course’s heads.

Shorts

• Head to https://www.cs50.net/shorts/2 and watch the shorts on loops, scope, the
Caesar Cipher, and RSA. Then head to https://www.cs50.net/shorts/3 and watch the
short on command-line arguments. Be sure you’re reasonably comfortable answering
the below when it comes time to submit this problem set’s form!

• How does a while loop differ from a do … while loop? When is the latter particularly
useful?

• What does undeclared identifier usually indicate if outputted by make (or,
really, clang)?

• Why is the Caesar Cipher not very secure?

• And unrelated to those shorts, be sure you’re reasonably comfortable answering the
below as well when it comes time to submit this problem set’s form!

◦ What’s a function?

◦ Why bother writing functions when you can just copy and paste code as needed?

Getting Started

• Alright, here we go again!
Open a terminal window if not open already (whether by opening gedit via Menu >
Programming > gedit or by opening Terminal itself via Menu > Programming >
Terminal). Then execute

update50

to make sure your appliance is up-to-date. In general, if you run into errors like "No
such file or directory" with the staff’s solutions or "invalid ID" with check50 , best to
re-run update50 , just to make sure you have the latest updates.

Next, execute

https://www.cs50.net/shorts/2
https://www.cs50.net/shorts/3

Problem Set 2: Crypto

6

mkdir ~/Dropbox/hacker2

at your prompt in order to make a directory called hacker2 in your Dropbox
directory. Take care not to overlook the space between mkdir and ~/Dropbox/
hacker2 or any other character for that matter! Keep in mind that ~ denotes your
home directory, ~/Dropbox denotes a directory called Dropbox therein, and ~/
Dropbox/hacker2 denotes a directory called hacker2 within ~/Dropbox .

Now execute

cd ~/Dropbox/hacker2

to move yourself into (i.e., open) that directory. Your prompt should now resemble the
below.

jharvard@appliance (~/Dropbox/hacker2):

If not, retrace your steps and see if you can determine where you went wrong. You
can actually execute

history

at the prompt to see your last several commands in chronological order if you’d like to
do some sleuthing. You can also scroll through the same one line at a time by hitting
your keyboard’s up and down arrows; hit Enter to re-execute any command that you’d
like. If still unsure how to fix, remember that CS50 Discuss3 is your friend!

Late Day

To receive a late day (that extends your deadline until Fri 9/27 at noon), you must
complete this section no later than Wed 9/25 at noon.

3 https://www.cs50.net/discuss

https://www.cs50.net/discuss
https://www.cs50.net/discuss

Problem Set 2: Crypto

7

• Head to http://www.youtube.com/playlist?list=PLhQjrBD2T382e9a6m_i2F-
a4xLm4hjYdG and watch the walkthroughs on string-0 , string-1 ,
and string-2 , whose source code can be found at http://
cdn.cs50.net/2013/fall/lectures/2/w/src2w/. Then head to http://www.youtube.com/
playlist?list=PLhQjrBD2T383LBd7z_5k32rbPdO99LNB9 and watch the walkthroughs
on capitalize-0 , capitalize-1 , and capitalize-2 , whose source code
can also be found at http://cdn.cs50.net/2013/fall/lectures/2/w/src2w/. Feel free to
watch any other walkthroughs of interest!

• Next, write, in a file called initials.c , a program that prompts a user for their
name (using GetString to obtain their name as a string) and then outputs their
initials in uppercase with no spaces or periods, followed by a newline (\n) and nothing
more. You may assume that the user’s input will contain only letters (uppercase and/
or lowercase) plus spaces. Folks like Joseph Gordon-Levitt , Conan O’Brien ,
and R.J. Aquino won’t be using your program. But the user’s input might be sloppy,
in which case there might be one or more spaces at the start and/or end of the user’s
input or even multiple spaces in a row.
So that we can automate some tests of your code, your program must behave per the
examples below. Assumed that the underlined text is what some user has typed.

jharvard@appliance (~/Dropbox/hacker2): ./initials

Milo Banana

MB

jharvard@appliance (~/Dropbox/hacker2): ./initials

 robert thomas bowden

RTB

If you’d like to check the correctness of your program with check50 , you may execute
the below.

check50 2013.hacker2.initials initials.c

And if you’d like to play with the staff’s own implementation of initials in the
appliance, you may execute the below.

~cs50/hacker2/initials

http://www.youtube.com/playlist?list=PLhQjrBD2T382e9a6m_i2F-a4xLm4hjYdG
http://www.youtube.com/playlist?list=PLhQjrBD2T382e9a6m_i2F-a4xLm4hjYdG
http://cdn.cs50.net/2013/fall/lectures/2/w/src2w/
http://cdn.cs50.net/2013/fall/lectures/2/w/src2w/
http://www.youtube.com/playlist?list=PLhQjrBD2T383LBd7z_5k32rbPdO99LNB9
http://www.youtube.com/playlist?list=PLhQjrBD2T383LBd7z_5k32rbPdO99LNB9
http://cdn.cs50.net/2013/fall/lectures/2/w/src2w/

Problem Set 2: Crypto

8

• Assuming you got initials to work and check50 outputted only green smileys,
go ahead and open a terminal window via Menu > Programming > Terminal. A big,
black window should open (bigger than the one embedded in gedit). Navigate your
way to ~/Dropbox/hacker2 , as with

cd Dropbox/hacker2

and then re-run check50 as follows to output a "coupon code":

check50 -c 2013.hacker2.initials initials.c

Go ahead and highlight the code that you see, select Edit > Copy, then visit https://
www.cs50.net/coupons/2 using Chrome inside of the appliance, paste the code where
prompted, as with control-v on your keyboard, or type it manually, and then click
Redeem. You should be rewarded with an extension of 24 hours.

You may (re-)submit coupons as many times as you’d like, but you’ll be rewarded with
no more than one 24-hour extension per problem set.

Passwords Et Cetera

• On most, if not all, systems running Linux or UNIX is a file called /etc/passwd .
By design, this file is meant to contain usernames and passwords, along with other
account-related details (e.g., paths to users' home directories and shells). Also by
(poor) design, this file is typically world-readable. Thankfully, the passwords therein
aren’t stored "in the clear" but are instead encrypted using a "one-way hash function."
When a user logs into these systems by typing a username and password, the latter
is encrypted with the very same hash function, and the result is compared against the
username’s entry in /etc/passwd . If the two ciphertexts match, the user is allowed
in. If you’ve ever forgotten some password, you may have been told that "I can’t look
up your password, but I can change it for you." It could be that person doesn’t know
how. But, odds are they just can’t if a one-way hash function’s involved.
Even though passwords in /etc/passwd are encrypted, the crypto involved is not
terribly strong. Quite often are adversaries, upon obtaining files like this one, able
to guess (and check) users' passwords or crack them using brute force (i.e., trying
all possible passwords). Only in recent years have (most) system administrators

https://www.cs50.net/coupons/2
https://www.cs50.net/coupons/2

Problem Set 2: Crypto

9

stopped storing passwords in /etc/passwd , instead using /etc/shadow , which
is (supposed to be) readable only by root . (Take a look at /etc/passwd in the
appliance, for instance; wherever you see x a password once was.) Below, though,
are some username:ciphertext pairs4 from an outdated (fake) system.

caesar:50zPJlUFIYY0o

hirschhorn:50q.zrL5e0Sak

jharvard:50yoN9fp966dU

malan:HA610l/.LeOak

milo:HAL7ye0Ms7wZY

zamyla:50NwUtF.OmQNY

Crack these passwords, each of which has been encrypted with C’s DES-based (not
MD5-based) crypt function. Specifically, write, in crack.c , a program that accepts a
single command-line argument: an encrypted password. (In case you test your code
with other ciphertexts, know that command-line arguments with certain characters (e.g.,
?) must be enclosed in single or double quotes; those quotation marks will not end
up in argv itself.) If your program is executed without any command-line arguments
or with more than one command-line argument, your program should complain and
exit immediately, with main returning any non-zero int (thereby signifying an error
that our own tests can detect). Otherwise, your program must proceed to crack the
given password, ideally as quickly as possible, ultimately printing to standard output
the password in the clear followed by \n , nothing more, nothing less, with main
returning 0 . The underlying design of this program is entirely up to you, but you must
explain each and every one of your design decisions, including any implications for
performance and accuracy, with profuse comments throughout your source code. Your
program must be designed in such a way that it could crack all of the passwords above,
even if said cracking might take quite a while. That is to say, it’s okay if your code might
take several minutes or days or longer to run. What we demand of you is correctness,
not necessarily optimal performance. Your program should certainly work on inputs
other than these as well; hard-coding into your program the solutions to the above is
not acceptable.

Your program must behave per the below; underlined is some sample input.

4 http://cdn.cs50.net/2013/fall/psets/2/hacker2/passwd

http://cdn.cs50.net/2013/fall/psets/2/hacker2/passwd
http://cdn.cs50.net/2013/fall/psets/2/hacker2/passwd

Problem Set 2: Crypto

10

jharvard@appliance (~/Dropbox/hacker2): ./crack 50yoN9fp966dU

crimson

Assume that users' passwords, as plaintext, are no longer than eight characters long.
As for their ciphertexts, you’d best pull up the "man page" (i.e., manual) for crypt
by executing

man crypt

in a terminal window so that you know how the function works. In particular, make sure
you understand its use of a "salt." (According to the man page, a salt "is used to perturb
the algorithm in one of 4096 different ways," but why might that be useful?) As implied
by that man page, you’ll likely want to put

#define _XOPEN_SOURCE

#include <unistd.h>

at the top of your file and link your program with -lcrypt .

You might also want to read up on C’s support for file I/O, as there’s quite a number
of English words in /usr/share/dict/words in the appliance that might (or might
not) save your program some time.

By design, /etc/passwd entrusts the security of passwords to an assumption: that
adversaries lack the computational resources with which to crack those passwords.
Once upon a time, that may have been true. Perhaps some still do. But when it comes
to security, assumptions are dangerous. May that this problem set make that claim all
the more real.

We should note that this problem set is no invitation to seek out other passwords to
crack. Do not conflate these Hacker Editions with "black hat" editions. We hope, though,
that by understanding better the design of today’s systems, you might one day build
better systems yourself. Besides acquainting you further with C, this problem set urges
you to start questioning designs, as vulnerabilities (if not regrets) often result from poor
ones.

Problem Set 2: Crypto

11

If you’d like to play with the staff’s own implementation of crack , well, sorry! :-)
Where’d be the fun in that?

How to Submit

Step 1 of 2

• When ready to submit, open up Chrome inside of the appliance (not on your own
computer) and visit cs50.net/submit5 , logging in if prompted.

• Click Submit toward the window’s top-left corner.

• Under pset2 on the screen that appears, click Upload New Submission.

• On the screen that appears, click Add files…. A window entitled Open Files should
appear.

• Navigate your way to crack.c , as by clicking jharvard, then double-clicking
Dropbox, then double-clicking pset2. Once you find crack.c , click it once to select
it, then click Open.

• If crack.c relies on any additional files, proceed to prepare those as well for upload.

• No need to upload initials.c , but you may if you’d like your TF to comment on it.

• Click Start upload to upload all of your files at once to CS50’s servers.

• On the screen that appears, you should see a window with No File Selected. If you
move your mouse toward the window’s lefthand side, you should see a list of the files
you uploaded. Click each to confirm the contents of each. (No need to click any other
buttons or icons.) If confident that you submitted the files you intended, consider your
source code submitted! If you’d like to re-submit different (or modified) files, simply
return to cs50.net/submit6 and repeat these steps. You may re-submit as many times as
you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

• Head to https://forms.cs50.net/2013/fall/psets/2/ where a short form awaits. Once you
have submitted that form (as well as your source code), you are done!

5 https://www.cs50.net/submit
6 https://www.cs50.net/submit

https://www.cs50.net/submit
https://www.cs50.net/submit
https://forms.cs50.net/2013/fall/psets/2/
https://www.cs50.net/submit
https://www.cs50.net/submit

Problem Set 2: Crypto

12

This was Problem Set 2.

	Problem Set 2: Crypto
	Table of Contents
	Objectives
	Recommended Reading
	diff pset2 hacker2
	Academic Honesty
	Reasonable
	Not Reasonable

	Scores
	Shorts
	Getting Started
	Late Day
	Passwords Et Cetera
	How to Submit
	Step 1 of 2
	Step 2 of 2

