
1

Problem Set 3: Game of Fifteen

This is CS50. Harvard University. Fall 2013.

Table of Contents

Objectives ... 2
Recommended Reading ... 2
diff pset3 hacker3 ... 2
Academic Honesty .. 2

Reasonable .. 3
Not Reasonable ... 4

Scores ... 5
Shorts .. 5
Getting Started ... 6
Searching .. 7
Sorting ... 16
The Game Begins .. 18
How to Submit .. 22

Step 1 of 2 .. 22
Step 2 of 2 .. 23

due Thu 10/3 at noon

By default, this problem set is due by Thu 10/3 at noon. However, if you

• complete Searching before Wed 10/2 at noon (i.e., early),

• generate a coupon code confirming as much before Wed 10/2 at noon, and

• submit that coupon code at https://www.cs50.net/coupons/3 before Wed 10/2 at
noon,

your deadline for the rest of the problem set’s problems will be extended from Thu
10/3 at noon until Fri 10/4 at noon. If you do not submit a coupon code before Wed
10/2 at noon, this problem set, including Searching, is still due by Thu 10/3. In other
words, by tackling part of the problem set early, you can extend your deadline for
the rest!

https://www.cs50.net/coupons/3

Problem Set 3:
Game of Fifteen

2

Questions? Head to cs50.net/discuss1 or join classmates at office hours2 !

Objectives

• Introduce you to larger programs and programs with multiple source files.

• Accustom you to reading someone else’s code.

• Empower you with Makefiles.

• Introduce you to literature in computer science.

• Implement a party favor.

Recommended Reading

• Page 17 of http://www.howstuffworks.com/c.htm.

• Chapters 13, 15, and 18 of Programming in C.

diff pset3 hacker3

• Hacker Edition dares you to implement sort in O(n) instead of O(n2).

• Hacker Edition asks you to play God.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The
course recognizes that interactions with classmates and others can facilitate mastery of
the course’s material. However, there remains a line between enlisting the help of another
and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on
problem sets is not permitted except to the extent that you may ask classmates and others
for help so long as that help does not reduce to another doing your work for you. Generally

1 https://www.cs50.net/discuss
2 https://www.cs50.net/ohs

https://www.cs50.net/discuss
https://www.cs50.net/ohs
http://www.howstuffworks.com/c.htm
https://www.cs50.net/discuss
https://www.cs50.net/ohs

Problem Set 3:
Game of Fifteen

3

speaking, when asking for help, you may show your code to others, but you may not view
theirs, so long as you and they respect this policy’s other constraints. Collaboration on
quizzes is not permitted at all. Collaboration on the course’s final project is permitted to
the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers
reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not
commit it until you solicit and receive approval in writing from the course’s heads. Acts
considered not reasonable by the course are handled harshly. If the course refers some
matter to the Administrative Board and the outcome is Admonish, Probation, Requirement
to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local
sanctions on top of that outcome that may include an unsatisfactory or failing grade for
work submitted or for the course itself.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some
other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or
even online, as by viewing, compiling, or running his or her code, even on your own
computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,
provided that those snippets are not themselves solutions to assigned problems and
that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that
he or she might help you identify and fix a bug.

• Sharing snippets of your own code on CS50 Discuss or elsewhere so that others might
help you identify and fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,
and for solutions to technical difficulties, but not for outright solutions to problem set’s
problems or your own final project.

Problem Set 3:
Game of Fifteen

4

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode
but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor
does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before
(re-)submitting your own.

• Failing to cite (as with comments) the origins of code or techniques that you discover
outside of the course’s own lessons and integrate into your own work, even while
respecting this policy’s other constraints.

• Giving or showing to a classmate your solution to a problem set’s problem when it is
he or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your
own.

• Providing or making available solutions to problem sets to individuals who might take
this course in the future.

• Redeeming or attempting to redeem someone else’s code for a late day.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the
quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed
snippets.

• Submitting the same or similar work to this course that you have submitted or will submit
to another.

Problem Set 3:
Game of Fifteen

5

• Submitting work to this course that you intend to use outside of the course (e.g., for a
job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution
on it.

Scores

Your work on this problem set will be evaluated along four axes primarily.

Scope
To what extent does your code implement the features required by our specification?

Correctness
To what extent is your code consistent with our specifications and free of bugs?

Design
To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or
logically)?

Style
To what extent is your code readable (i.e., commented and indented with variables
aptly named)?

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily
submit this and all other problem sets to be eligible for a satisfactory grade unless granted
an exception in writing by the course’s heads.

Shorts

• Head to https://www.cs50.net/shorts/3 and watch the shorts on bubble sort, insertion
sort, and selection sort. Then head to https://www.cs50.net/shorts/4 and watch the short
on gdb . (Phew, so many shorts! And so many sorts! Ha.) Be sure you’re reasonably
comfortable answering the below when it comes time to submit this problem set’s form!

◦ gdb lets you "debug" program, but, more specifically, what does it let you do?

◦ Why does binary search require that an array be sorted?

https://www.cs50.net/shorts/3
https://www.cs50.net/shorts/4

Problem Set 3:
Game of Fifteen

6

◦ Why is bubble sort in O(n2)?

◦ Why is insertion sort in Ω(n)?

◦ What’s the worst-case running time of merge sort?

◦ In no more than 3 sentences, how does selection sort work?

Getting Started

• Recall that, for Problem Sets 1 and 2, you started writing programs from scratch,
creating your own pset1 and pset2 directories with mkdir . For Problem Set 3,
you’ll instead download "distribution code" (otherwise known as a "distro"), written by
us, and add your own lines of code to it. You’ll first need to read and understand our
code, though, so this problem set is as much about learning to read someone else’s
code as it is about writing your own!
Let’s get you started. Go ahead and open a terminal window if not open already
(whether by opening gedit via Menu > Programming > gedit or by opening Terminal
itself via Menu > Programming > Terminal). Then execute

update50

to make sure your appliance is up-to-date. Then execute

cd ~/Dropbox

followed by

wget http://cdn.cs50.net/2013/fall/psets/3/hacker3/hacker3.zip

to download a ZIP of this problem set’s distro into your appliance (with a command-line
program called wget). You should see a bunch of output followed by:

'hacker3.zip' saved

If you instead see

Problem Set 3:
Game of Fifteen

7

unable to resolve host address

your appliance probably doesn’t have Internet access (even if your laptop does), in
which case you can try running connect50 or even restarting your appliance via
Menu > Log Off, after which you can try wget again.

Ultimately, confirm that you’ve indeed downloaded hacker3.zip by executing:

ls

Then, run

unzip hacker3.zip

to unzip the file. If you then run ls again, you should see that you have a newly
unzipped directory called hacker3 as well. Proceed to execute

cd hacker3

followed by

ls

and you should see that the directory contains two "subdirectories":

fifteen find

Fun times ahead!

Searching

By default, this problem set is due by Thu 10/3 at noon. However, if you

• complete this section before Wed 10/2 at noon (i.e., early),

Problem Set 3:
Game of Fifteen

8

• generate a coupon code confirming as much before Wed 10/2 at noon, and

• submit that coupon code at https://www.cs50.net/coupons/3 before Wed 10/2 at
noon,

your deadline for the rest of the problem set’s problems will be extended from Thu
10/3 at noon until Fri 10/4 at noon. If you do not submit a coupon code before Wed
10/2 at noon, this problem set, including this section, is still due by Thu 10/3. In
other words, by tackling part of the problem set early, you can extend your deadline
for the rest!

• Okay, let’s dive into the first of those subdirectories. Execute the command below in a
terminal window in your appliance.

cd ~/hacker3/find/

If you list the contents of this directory, you should see the below.

helpers.c helpers.h Makefile find.c generate.c

Wow, that’s a lot of files, eh? Not to worry, we’ll walk you through them.

• Implemented in generate.c is a program that uses a "pseudorandom-number
generator" (via a function called rand) to generate a whole bunch of random (well,
pseudorandom, since computers can’t actually generate truly random) numbers, one
per line. (Cf. https://www.cs50.net/resources/cppreference.com/stdother/rand.html.)
Go ahead and compile this program by executing the command below.

make generate

Now run the program you just compiled by executing the command below.

./generate

You should be informed of the program’s proper usage, per the below.

Usage: generate n [s]

https://www.cs50.net/coupons/3
https://www.cs50.net/resources/cppreference.com/stdother/rand.html

Problem Set 3:
Game of Fifteen

9

As this output suggests, this program expects one or two command-line arguments.
The first, n , is required; it indicates how many pseudorandom numbers you’d like
to generate. The second, s , is optional, as the brackets are meant to imply; if
supplied, it represents the value that the pseudorandom-number generator should use
as its "seed." A seed is simply an input to a pseudorandom-number generator that
influences its outputs. For instance, if you seed rand by first calling srand (another
function whose purpose is to "seed" rand) with an argument of, say, 1 , and then
call rand itself three times, rand might return 17767 , then 9158 , then 39017 .
(Cf. https://www.cs50.net/resources/cppreference.com/stdother/srand.html.) But if you
instead seed rand by first calling srand with an argument of, say, 2 , and then
call rand itself three times, rand might instead return 38906 , then 31103 , then
52464 . But if you re-seed rand by calling srand again with an argument of 1 , the
next three times you call rand , you’ll again get 17767 , then 9158 , then 39017 !
See, not so random.

Go ahead and run this program again, this time with a value of, say, 10 for n , as in
the below; you should see a list of 10 pseudorandom numbers.

./generate 10

Run the program a third time using that same value for n; you should see a different
list of 10 numbers. Now try running the program with a value for s too (e.g., 0), as in
the below.

./generate 10 0

Now run that same command again:

./generate 10 0

Bet you saw the same "random" sequence of ten numbers again? Yup, that’s what
happens if you don’t vary a pseudorandom number generator’s initial seed.

• Now take a look at generate.c itself with gedit . (Remember how?) Comments
atop that file explain the program’s overall functionality. But it looks like we forgot

https://www.cs50.net/resources/cppreference.com/stdother/srand.html

Problem Set 3:
Game of Fifteen

10

to comment the code itself. Read over the code carefully until you understand each
line and then comment our code for us, replacing each TODO with a phrase that
describes the purpose or functionality of the corresponding line(s) of code. (Know that
an unsigned int is just an int that cannot be negative.) And for more details on
rand and srand , recall that you can execute:

man rand

man srand

Once done commenting generate.c , re-compile the program to be sure you didn’t
break anything by re-executing the command below.

make generate

If generate no longer compiles properly, take a moment to fix what you broke!

Now, recall that make automates compilation of your code so that you don’t have to
execute clang manually along with a whole bunch of switches. Notice, in fact, how
make just executed a pretty long command for you, per the tool’s output. However, as
your programs grow in size, make won’t be able to infer from context anymore how
to compile your code; you’ll need to start telling make how to compile your program,
particularly when they involve multiple source (i.e., .c) files. And so we’ll start relying
on "Makefiles," configuration files that tell make exactly what to do.

How did make know how to compile generate in this case? It actually used a
configuration file that we wrote. Using gedit , go ahead and look at the file called
Makefile that’s in the same directory as generate.c . This Makefile is
essentially a list of rules that we wrote for you that tells make how to build generate
from generate.c for you. The relevant lines appear below.

generate: generate.c

 `clang` -ggdb -std=c99 -Wall -Werror -o generate generate.c

The first line tells make that the "target" called generate should be built by invoking
the second line’s command. Moreover, that first line tells make that generate is
dependent on generate.c , the implication of which is that make will only re-build

Problem Set 3:
Game of Fifteen

11

generate on subsequent runs if that file was modified since make last built generate .
Neat time-saving trick, eh? In fact, go ahead and execute the command below again,
assuming you haven’t modified generate.c .

make generate

You should be informed that generate is already up to date. Incidentally, know that the
leading whitespace on that second line is not a sequence of spaces but, rather, a tab.
Unfortunately, make requires that commands be preceded by tabs, so be careful not to
change them to spaces with gedit (which automatically converts tabs to four spaces),
else you may encounter strange errors! The -Werror flag, recall, tells clang to
treat warnings (bad) as though they’re errors (worse) so that you’re forced (in a good,
instructive way!) to fix them.

• Now take a look at find.c with gedit . Notice that this program expects a single
command-line argument: a "needle" to search for in a "haystack" of values. Once done
looking over the code, go ahead and compile the program by executing the command
below.

make find

Notice, per that command’s output, that make actually executed the below for you.

clang -ggdb -std=c99 -Wall -Werror -o find find.c helpers.c -lcs50 -lm

Notice further that you just compiled a program comprising not one but two .c files:
helpers.c and find.c . How did make know what to do? Well, again, open up
Makefile to see the man behind the curtain. The relevant lines appear below.

find: find.c helpers.c helpers.h

 clang -ggdb -std=c99 -Wall -Werror -o find find.c helpers.c -lcs50 -lm

Per the dependencies implied above (after the colon), any changes to find.c ,
helpers.c , or helpers.h will compel make to rebuild find the next time it’s
invoked for this target.

Go ahead and run this program by executing, say, the below.

Problem Set 3:
Game of Fifteen

12

./find 13

You’ll be prompted to provide some hay (i.e., some integers), one "straw" at a time.
As soon as you tire of providing integers, hit ctrl-d to send the program an EOF (end-
of-file) character. That character will compel GetInt from the CS50 Library to return
INT_MAX , a constant that, per find.c , will compel find to stop prompting for hay.
The program will then look for that needle in the hay you provided, ultimately reporting
whether the former was found in the latter. In short, this program searches an array for
some value. At least, it should, but it won’t find anything yet! That’s where you come
in. More on your role in a bit.

In turns out you can automate this process of providing hay, though, by "piping" the
output of generate into find as input. For instance, the command below passes
1,000 pseudorandom numbers to find , which then searches those values for 42 .

./generate 1000 | ./find 42

Note that, when piping output from generate into find in this manner, you won’t
actually see `generate’s numbers, but you will see `find’s prompts.

Alternatively, you can "redirect" `generate’s output to a file with a command like the
below.

./generate 1000 > numbers.txt

You can then redirect that file’s contents as input to find with the command below.

./find 42 < numbers.txt

Let’s finish looking at that Makefile . Notice the line below.

all: find generate

Problem Set 3:
Game of Fifteen

13

This target implies that you can build both generate and find simply by executing
the below.

make all

Even better, the below is equivalent (because make builds a `Makefile’s first target
by default).

make

If only you could whittle this whole problem set down to a single command! Finally,
notice these last lines in Makefile :

clean:

 rm -f *.o a.out core find generate

This target allows you to delete all files ending in .o or called core (more on that
soon!), find , or generate simply by executing the command below.

make clean

Be careful not to add, say, *.c to that last line in Makefile ! (Why?) Any line,
incidentally, that begins with # is just a comment.

• And now the fun begins! Notice that find.c calls search , a function declared in
helpers.h . Unfortunately, we forgot to implement that function fully in helpers.c !
(To be sure, we could have put the contents of helpers.h and helpers.c in
find.c itself. But it’s sometimes better to organize programs into multiple files,
especially when some functions are essentially utility functions that might later prove
useful to other programs as well, much like those in the CS50 Library.) Take a peek
at helpers.c with gedit , and you’ll see that search always returns false ,
whether or not value is in values . Re-write search in such a way that it uses
linear search, returning true if value is in values and false if value is not
in values . Take care to return false right away if n isn’t even positive.
When ready to check the correctness of your program, try running the command below.

Problem Set 3:
Game of Fifteen

14

./generate 1000 50 | ./find 2008

Because one of the numbers outputted by generate , when seeded with 50 , is
2008 , your code should find that "needle"! By contrast, try running the command below
as well.

./generate 1000 50 | ./find 2013

Because 2013 is not among the numbers outputted by generate , when seeded
with 50 , your code shouldn’t find that needle. Best to try some other tests as well,
as by running generate with some seed, taking a look at its output, then piping that
same output to find , looking for a "needle" you know to be among the "hay".

Incidentally, note that main in find.c is written in such a way that find returns 0
if the needle is found, else it returns 1 . You can check the so-called "exit code" with
which main returns by executing

echo $?

after running some other command. For instance, assuming your implementation of
search is correct, if you run

./generate 1000 50 | ./find 2008

echo $?

you should see 0 , since 2008 is, again, among the 1,000 numbers outputted by
generate when seeded with 50 , and so search (written by you) should return
true , in which case main (written by us) should return (i.e., exit with) 0 . By contrast,
assuming your implementation of search is correct, if you run

./generate 1000 50 | ./find 2013

echo $?

Problem Set 3:
Game of Fifteen

15

you should see 1 , since 2013 is, again, not among the 1,000 numbers outputted by
generate when seeded with 50 , and so search (written by you) should return
false , in which case main (written by us) should return (i.e., exit with) 1 . Make
sense?

When ready to check the correctness of your program officially with check50 , you
may execute the below. Be sure to run the command inside of ~/Dropbox/hacker3/
find .

check50 2013.hacker3.find helpers.c

Incidentally, be sure not to get into the habit of testing your code with check50 before
testing it yourself. (And definitely don’t get into an even worse habit of only testing
your code with check50 !) Suffice it to say check50 doesn’t exist in the real world,
so running your code with your own sample inputs, comparing actual output against
expected output, is the best habit to get into sooner rather than later. Truly, don’t do
yourself a long-term disservice!

Anyhow, if you’d like to play with the staff’s own implementation of find in the
appliance, you may execute the below.

~cs50/hacker3/find

• Need help? Head to cs50.net/discuss3 or join classmates at office hours4 !

• Assuming you got find to work before Wed 10/2 at noon and check50 outputted
only green smileys, here’s how to receive a late day. No need to follow this bullet’s
steps otherwise.
Go ahead and open a terminal window via Menu > Programming > Terminal. A big,
black window should open (bigger than the one embedded in gedit). Navigate your
way to ~/Dropbox/hacker3 , as with

cd ~/Dropbox/hacker3/find

3 https://www.cs50.net/discuss
4 https://www.cs50.net/ohs

https://www.cs50.net/discuss
https://www.cs50.net/ohs
https://www.cs50.net/discuss
https://www.cs50.net/ohs

Problem Set 3:
Game of Fifteen

16

and then re-run check50 as follows to output a "coupon code":

check50 -c 2013.hacker3.find helpers.c

Go ahead and highlight the code that you see, select Edit > Copy, then visit https://
www.cs50.net/coupons/3 using Chrome inside of the appliance, paste the code where
prompted, as with control-v on your keyboard, or type it manually, and then click
Redeem. You should be rewarded with an extension of 24 hours.

You may (re-)submit coupons as many times as you’d like, but you’ll be rewarded with
no more than one 24-hour extension per problem set.

Sorting

• Alright, linear search is pretty meh. Recall from Week 0 and Week 3 that we can do
better, but first we’d best sort that hay.

• Notice that find.c calls sort , a function declared in helpers.h . Unfortunately,
we forgot to implement that function fully too in helpers.c ! Take a peek at
helpers.c with gedit , and you’ll see that sort returns immediately, even though
find’s `main function does pass it an actual array.
Now, recall the syntax for declaring an array. Not only do you specify the array’s type,
you also specify its size between brackets, just as we do for haystack in find.c :

int haystack[MAX];

But when passing an array, you only specify its name, just as we do when passing
haystack to sort in find.c :

sort(haystack, size);

(Why do we also pass in the size of that array separately?)

When declaring a function that takes a one-dimensional array as an argument, though,
you don’t need to specify the array’s size, just as we don’t when declaring sort in
helpers.h (and helpers.c):

https://www.cs50.net/coupons/3
https://www.cs50.net/coupons/3

Problem Set 3:
Game of Fifteen

17

void sort(int values[], int n);

Go ahead and implement sort so that the function actually sorts, from smallest to
largest, the array of numbers that it’s passed, in such a way that its running time is in
O(n), where n is the array’s size. Yes, this running time is possible because you may
assume that each of the array’s numbers wil be non-negative and less than LIMIT ,
a constant defined in generate.c . Leverage that assumption! However, realize that
the array might contain duplicates.

A previous version of this specification accidentally asked for a running time of
O(n2) instead of O(n), so we will accept either. But you are encouraged to (re-)try
to achieve O(n), since that’s the intended challenge!

Now, technically, because we’ve bounded with a constant the amount of hay that find
will accept (and because the value of sort’s second parameter is bounded by
an `int’s finitely many bits), the running time of `sort , however
implemented, is arguably O(1). Even so, for the sake of this asymptotic challenge, think
of the size of `sort’s input as n.

Anyhow, take care not to alter our declaration of sort . Its prototype must remain:

void sort(int values[], int n);

As this return type of void implies, this function must not return a sorted array; it
must instead "destructively" sort the actual array that it’s passed by moving around the
values therein. As we’ll discuss in Week 4, arrays are not passed "by value" but instead
"by reference," which means that sort will not be passed a copy of an array but,
rather, the original array itself.

Although you may not alter our declaration of sort , you’re welcome to define your
own function(s) in helpers.c that sort itself may then call.

We leave it to you to determine how best to test your implementation of sort . But don’t
forget that printf and, per Week 3’s first lecture, gdb are your friends. And don’t
forget that you can generate the same sequence of pseudorandom numbers again and
again by explicitly specifying generate \'s seed. Before you ultimately submit, though,

Problem Set 3:
Game of Fifteen

18

be sure to remove any such calls to printf , as we like our programs' outputs just
they way they are!

Incidentally, check out Resources on the course’s website for a quick-reference guide
for gdb . If you’d like to play with the staff’s own implementation of find in the
appliance, you may execute the below.

~cs50/hacker3/find

No check50 for this one!

• Now that sort (presumably) works, it’s time to improve upon search , the other
function that lives in helpers.c . Recall that your first version implemented linear
search. Rip out the lines that you wrote earlier (sniff) and re-implement search as
Binary Search, that divide-and-conquer strategy that we employed in Week 0 and again
in Week 3. You are welcome to take an iterative or, per Week 4, a recursive approach.
If you pursue the latter, though, know that you may not change our declaration of
search , but you may write a new, recursive function (that perhaps takes different
parameters) that search itself calls. When it comes time to submit this problem set, it
suffices to submit this new-and-improved version of search ; you needn’t submit your
original version that used linear search.

The Game Begins

• And now it’s time to play. The Game of Fifteen is a puzzle played on a square, two-
dimensional board with numbered tiles that slide. The goal of this puzzle is to arrange
the board’s tiles from smallest to largest, left to right, top to bottom, with an empty space
in board’s bottom-right corner, as in the below.

Problem Set 3:
Game of Fifteen

19

Sliding any tile that borders the board’s empty space in that space constitutes a "move."
Although the configuration above depicts a game already won, notice how the tile
numbered 12 or the tile numbered 15 could be slid into the empty space. Tiles may not
be moved diagonally, though, or forcibly removed from the board.

Although other configurations are possible, we shall assume that this game begins with
the board’s tiles in reverse order, from largest to smallest, left to right, top to bottom,
with an empty space in the board’s bottom-right corner. If, however, and only if the
board contains an odd number of tiles (i.e., the height and width of the board are even),
the positions of tiles numbered 1 and 2 must be swapped, as in the below. The puzzle
is solvable from this configuration.

• Navigate your way to ~/Dropbox/hacker3/fifteen/ , and take a look at
fifteen.c with gedit . (Remember how?) Within this file is an entire framework for
the Game of Fifteen. The challenge up next is to complete this game’s implementation.

Problem Set 3:
Game of Fifteen

20

Implement God Mode for this game.

First implement init in such a way that the board is initialized to a pseudorandom
but solvable configuration. To be clear, whereas the standard edition of this
problem set requires that the board be initialized to a specific configuration, this
Hacker Edition requires that it be initialized to a pseudorandom but still solvable
configuration. Then complete the implementation of draw , move , and won so that
a human can actually play the game. But embed in the game a cheat, whereby, rather
than typing an integer betwen 1 and d2 - 1, where d is the board’s dimension, the human
can also type

GOD

to compel "the computer" to take control of the game and solve it (using any strategy,
optimal or non-optimal), making, say, only four moves per second so that the human
can actually watch. Presumably, you’ll need to swap out GetInt for something more
versatile. It’s fine if your implementation of God Mode only works (bearably fast) for d
≤ 4; you need not worry about testing God Mode for d > 4. Oh and you can’t implement
God Mode by remembering how init initialized the board (as by remembering the
sequence of moves that got your program to some pseudorandom but solvable state).
That’d be, um, cheating. At cheating.

To test your implementation, you can certainly try playing it yourself, with or without
God Mode enabled. (Know that you can quit your program by hitting ctrl-c.) Be sure
that you (and we) cannot crash your program, as by providing bogus tile numbers. And
know that, much like you automated input into find , so can you automate execution
of this game via input redirection if you store in some file a winning sequence of moves
for some configuration.

Any design decisions not explicitly prescribed herein (e.g., how much space you
should leave between numbers when printing the board) are intentionally left to you.
Presumably the board, when printed, should look something like the below (albeit
pseudorandom), but we leave it to you to implement your own vision.

15 14 13 12

11 10 9 8

Problem Set 3:
Game of Fifteen

21

 7 6 5 4

 3 1 2 _

Incidentally, recall that the positions of tiles numbered 1 and 2 should only be
swapped (as they are in the 4 × 4 example above) if the board has an odd number of
tiles (as does the 4 × 4 example above). If the board has an even number of tiles, those
positions should not be swapped. Consider, for instance, the 3 × 3 example below:

8 7 6

5 4 3

2 1 _

Feel free to tweak the appropriate argument to usleep to speed up animation. In fact,
you’re welcome to alter the aesthetics of the game. For (optional) fun with "ANSI escape
sequences," including color, take a look at our implementation of clear and check
out http://isthe.com/chongo/tech/comp/ansi_escapes.html for more tricks.

You’re welcome to write your own functions and even change the prototypes of
functions we wrote. But we ask that you not alter the flow of logic in main so that we
can automate some tests of your program. In particular, main must only return 0 if
and when the user has actually won the game; non-zero values should be returned
in any cases of error, as implied by our distribution code. And be sure not to alter the
staff’s implementation save or `main’s usage thereof. If in doubt as to whether some
design decision of yours might run counter to the staff’s wishes, simply contact your
teaching fellow.

If you’d like to play with the staff’s own implementation of fifteen in the appliance,
including God Mode, you may execute the below.

~cs50/hacker3/fifteen

Speaking of God Mode, where to begin? Well, first read up on this Game of Fifteen.
Wikipedia is probably a good starting point:

http://isthe.com/chongo/tech/comp/ansi_escapes.html

Problem Set 3:
Game of Fifteen

22

http://en.wikipedia.org/wiki/N-puzzle

Then dive a bit deeper, perhaps reading up on an algorithm called A*.

http://en.wikipedia.org/wiki/A*_search_algorithm

Consider using "Manhattan distance" (aka "city-block distance") as your
implementation’s heuristic. If you find that A* takes up too much memory (particularly
for d ≥ 4), though, you might want to take a look at iterative deepening A* (IDA*) instead:

http://webdocs.cs.ualberta.ca/~tony/RecentPapers/pami94.pdf

The staff’s own implementation, meanwhile, utilizes an algorithm like that in this paper:

http://larc.unt.edu/ian/pubs/saml.pdf

You’re welcome to expand your search for ideas beyond those in these papers, but
take care that your research does not lead you to actual code. Curling up with others'
pseudocode is fine, but do click away if you stumble upon actual implementations
(whether in C or other languages).

Alright, get to it, implement this game!

How to Submit

Step 1 of 2

• When ready to submit, open up a Terminal window and navigate your way to ~/
Dropbox . Create a ZIP (i.e., compressed) file containing your entire hacker3
directory by executing the below. Incidentally, -r means "recursive," which in this case
means to ZIP up everything inside of hacker3 , including any subdirectories (or even
subsubdirectories!).

zip -r hacker3.zip hacker3

If you type ls thereafter, you should see that you have a new file called
hacker3.zip in ~/Dropbox . (If you realize later that you need to make a change

http://en.wikipedia.org/wiki/N-puzzle
http://en.wikipedia.org/wiki/A*_search_algorithm
http://webdocs.cs.ualberta.ca/~tony/RecentPapers/pami94.pdf
http://larc.unt.edu/ian/pubs/saml.pdf

Problem Set 3:
Game of Fifteen

23

to some file and re-ZIP everything, you can delete the ZIP file you already made with
rm hacker3.zip , then create a new ZIP file as before.)

• Once done creating your ZIP file, open up Chrome inside of the appliance (not on your
own computer) and visit cs50.net/submit5 , logging in if prompted.

• Click Submit toward the window’s top-left corner.

• Under pset3 on the screen that appears, click Upload New Submission.

• On the screen that appears, click Add files…. A window entitled Open Files should
appear.

• Navigate your way to hacker3.zip , as by clicking jharvard, then double-clicking
Dropbox. Once you find hacker3.zip , click it once to select it, then click Open.

• Click Start upload to upload your ZIP file to CS50’s servers.

• On the screen that appears, you should see a window with No File Selected. If you
move your mouse toward the window’s lefthand side, you should see a list of the files
you uploaded. Click each to confirm the contents of each. (No need to click any other
buttons or icons.) If confident that you submitted the files you intended, consider your
source code submitted! If you’d like to re-submit different (or modified) files, simply
return to cs50.net/submit6 and repeat these steps. You may re-submit as many times as
you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

• Head to https://forms.cs50.net/2013/fall/psets/3/ where a short form awaits. Once you
have submitted that form (as well as your source code), you are done!
This was Problem Set 3.

5 https://www.cs50.net/submit
6 https://www.cs50.net/submit

https://www.cs50.net/submit
https://www.cs50.net/submit
https://forms.cs50.net/2013/fall/psets/3/
https://www.cs50.net/submit
https://www.cs50.net/submit

	Problem Set 3: Game of Fifteen
	Table of Contents
	Objectives
	Recommended Reading
	diff pset3 hacker3
	Academic Honesty
	Reasonable
	Not Reasonable

	Scores
	Shorts
	Getting Started
	Searching
	Sorting
	The Game Begins
	How to Submit
	Step 1 of 2
	Step 2 of 2

