
1

Problem Set 4: Breakout

This is CS50. Harvard University. Fall 2013.

Table of Contents

Objectives ... 1
diff pset4 hacker4 ... 2
Academic Honesty .. 2

Reasonable .. 3
Not Reasonable ... 3

Scores ... 4
Shorts .. 5
Backstory .. 5
Getting Started ... 6
Breakout .. 18
How to Submit .. 22

Step 1 of 2 .. 22
Step 2 of 2 .. 23

due Thu 10/10 Fri 10/11 at noon

with thanks to Eric Roberts of Stanford

No need to submit any work early (i.e., by Wed) this week in order to get an extra
day. Everyone gets an extra day this week; everyone’s deadline is Fri 10/11!

Questions? Head to cs50.net/discuss1 or join classmates at office hours2 !

Objectives

• Learn an API.

• Build a game with a real GUI.

1 https://www.cs50.net/discuss
2 https://www.cs50.net/ohs

https://www.cs50.net/discuss
https://www.cs50.net/ohs
https://www.cs50.net/discuss
https://www.cs50.net/ohs

Problem Set 4: Breakout

2

• Acquaint you with event handling.

• Impress your friends.

diff pset4 hacker4

• Hacker Edition requires that ball bounce off paddle at varying angles.

• Hacker Edition offers bonus features, including:

◦ God Mode;

◦ variable scoring;

◦ shrinking paddles;

◦ accelerating velocity; and/or

◦ lasers.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The
course recognizes that interactions with classmates and others can facilitate mastery of
the course’s material. However, there remains a line between enlisting the help of another
and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on
problem sets is not permitted except to the extent that you may ask classmates and others
for help so long as that help does not reduce to another doing your work for you. Generally
speaking, when asking for help, you may show your code to others, but you may not view
theirs, so long as you and they respect this policy’s other constraints. Collaboration on
quizzes is not permitted at all. Collaboration on the course’s final project is permitted to
the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers
reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not
commit it until you solicit and receive approval in writing from the course’s heads. Acts
considered not reasonable by the course are handled harshly. If the course refers some
matter to the Administrative Board and the outcome is Admonish, Probation, Requirement
to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local

Problem Set 4: Breakout

3

sanctions on top of that outcome that may include an unsatisfactory or failing grade for
work submitted or for the course itself.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some
other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or
even online, as by viewing, compiling, or running his or her code, even on your own
computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,
provided that those snippets are not themselves solutions to assigned problems and
that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that
he or she might help you identify and fix a bug.

• Sharing snippets of your own code on CS50 Discuss or elsewhere so that others might
help you identify and fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,
and for solutions to technical difficulties, but not for outright solutions to problem set’s
problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode
but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor
does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before
(re-)submitting your own.

Problem Set 4: Breakout

4

• Failing to cite (as with comments) the origins of code or techniques that you discover
outside of the course’s own lessons and integrate into your own work, even while
respecting this policy’s other constraints.

• Giving or showing to a classmate your solution to a problem set’s problem when it is
he or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your
own.

• Providing or making available solutions to problem sets to individuals who might take
this course in the future.

• Redeeming or attempting to redeem someone else’s code for a late day.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the
quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed
snippets.

• Submitting the same or similar work to this course that you have submitted or will submit
to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a
job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution
on it.

Scores

Your work on this problem set will be evaluated along four axes primarily.

Scope
To what extent does your code implement the features required by our specification?

Correctness
To what extent is your code consistent with our specifications and free of bugs?

Problem Set 4: Breakout

5

Design
To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or
logically)?

Style
To what extent is your code readable (i.e., commented and indented with variables
aptly named)?

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily
submit this and all other problem sets to be eligible for a satisfactory grade unless granted
an exception in writing by the course’s heads.

Shorts

• Head to https://www.cs50.net/shorts/4 and watch the shorts on pointers and strings.
Then head to https://www.cs50.net/shorts/5 and watch the short on the CS50 Library.
We may have a few questions for you when it comes time to submit this problem set’s
form!

Backstory

One day in the late summer of 1975, Nolan Bushnell [founder of Atari and,
um, Chuck E. Cheese’s], defying the prevailing wisdom that paddle games
were over, decided to develop a single-player version of Pong; instead of
competing against an opponent, the player would volley the ball into a wall
that lost a brick whenever it was hit. He called [Steve] Jobs into his office,
sketched it out on his little blackboard, and asked him to design it. There
would be a bonus, Bushnell told him, for every chip fewer than fifty that he
used. Bushnell knew that Jobs was not a great engineer, but he assumed,
correctly, that he would recruit [Steve] Wozniak, who was always hanging
around. "I looked at it as a two-for-one thing," Bushnell recalled. "Woz was
a better engineer."

Wozniak was thrilled when Jobs asked him to help and proposed splitting the
fee. "This was the most wonderful offer in my life, to actually design a game
that people would use," he recalled. Jobs said it had to be done in four days
and with the fewest chips possible. What he hid from Wozniak was that the
deadline was one that Jobs had imposed, because he needed to get to the

https://www.cs50.net/shorts/4
https://www.cs50.net/shorts/5

Problem Set 4: Breakout

6

All One Farm to help prepare for the apple harvest. He also didn’t mention
that there was a bonus tied to keeping down the number of chips.

"A game like this might take most engineers a few months," Wozniak
recalled. "I thought that there was no way I could do it, but Steve made me
sure that I could." So he stayed up four nights in a row and did it. During the
day at HP, Wozniak would sketch out his design on paper. Then, after a fast-
food meal, he would go right to Atari and stay all night. As Wozniak churned
out the design, Jobs sat on a bench to his left implementing it by wire-
wrapping the chips onto a breadboard. "While Steve was breadboarding, I
spent time playing my favorite game ever, which was the auto racing game
Gran Trak 10," Wozniak said.

Astonishingly, they were able to get the job done in four days, and Wozniak
used only forty-five chips. Recollections differ, but by most accounts Jobs
simply gave Wozniak half of the base fee and not the bonus Bushnell paid for
saving five chips. It would be another ten years before Wozniak discovered
(by being shown the tale in a book on the history of Atari titled Zap) that Jobs
had been paid this bonus….

— Walter Isaacson Steve Jobs

Getting Started

Your challenge for this problem set is to implement the same game that Steve and Steve
did, albeit in software rather than hardware. That game is Breakout.

Now, Problem Set 3 was also a game, but its graphical user interface (GUI) wasn’t exactly
a GUI; it was more of a textual user interface, since we essentially simulated graphics
with printf . Let’s give Breakout an actual GUI by building atop the Stanford Portable
Library (SPL), which is similar in spirit to the CS50 Library but includes an API (application
programming interface) for GUI programming and more.

Let’s get you started.

• As always, first open a terminal window and execute

update50

Problem Set 4: Breakout

7

to make sure your appliance is up-to-date.

• Next execute

cd ~/Dropbox

followed by

wget http://cdn.cs50.net/2013/fall/lectures/5/m/src5m.zip

to download some source code from Week 5. If you instead see

unable to resolve host address

your appliance probably doesn’t have Internet access (even if your laptop does), in
which case you can try running connect50 or even restarting your appliance via
Menu > Log Off, after which you can try wget again.

When ready, unzip the file with

unzip src5m.zip

at which point you should find yourself with a directory called src5m in ~/Dropbox .
Navigate your way into it with

cd src5m

and then execute

ls

and you should see the below.

bounce.c checkbox.c cursor.c Makefile spl text.c

button.c click.c label.c slider.c spl.jar window.c

Problem Set 4: Breakout

8

Go ahead and compile all of these programs at once (thanks to the Makefile in
there) by executing the below.

make

Then execute the simplest of those programs as follows.

./window

A window quite like the below should appear and then disappear after 5 seconds.

Neat, eh? Open up window.c with gedit . Let’s now take a tour.

http://www.youtube.com/watch?v=gjirq3MzqBY
How did we know how to call newGWindow like that? Well, there aren’t man pages
for SPL, but you can peruse the relevant header file (gwindow.h). In fact, notice that
inside of src5m is a subdirectory called spl . Inside of that is another subdirectory
called include . If you take a look there, you’ll find gwindow.h . Open it up with
gedit and look around. (Alternatively, you can see it at http://cdn.cs50.net/2013/

http://www.youtube.com/watch?v=gjirq3MzqBY
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/include/gwindow.h

Problem Set 4: Breakout

9

fall/lectures/5/m/src5m/spl/include/gwindow.h.) Hm, a bit overwhelming. But because
SPL’s author has commented the code in a standard way, it turns out that you
can generate more user-friendly, web-based documentation as a result! Indeed, take
a look now at http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gwindow.html,
and you’ll see a much friendlier format. Click newGWindow under Functions, and
you’ll see its prototype:

GWindow newGWindow(double width, double height);

That’s how we knew! See http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/
index.html for an index into SPL’s documentation, though we’ll point out more specific
places to look.

Now, in the interests of full disclosure, we should mention that SPL is still in beta,
so there may be some bugs in its documentation. When in doubt, best to consult
those raw header files instead!

• Next open up click.c with gedit . This one’s a bit more involved but it’s
representative of how to "listen" for "events", quite like those you could "broadcast" in
Scratch. Let’s take a look.
http://www.youtube.com/watch?v=BStiekPFKWI
See http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gevents.html for SPL’s
documentation of GEvent .

• Now open up cursor.c with gedit . This program, too, handles events, but it also
responds to those events by moving a circle (well, a GOval) in lockstep. Let’s take
a look.
http://www.youtube.com/watch?v=xsB0v8GtVMw
See http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gobjects.html for SPL’s
documentation of GOval and other types of objects.

• Next open bounce.c with gedit . This one uses a bit of arithmetic to bounce a circle
back and forth between a window’s edges. Let’s take a look.
http://www.youtube.com/watch?v=8RMHJe1ZpKM

• Now take a look at button.c , checkbox.c , label.c , slider.c , and text.c
in any order with gedit . No videos for those, but do try running them each to see

http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/include/gwindow.h
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gwindow.html
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/index.html
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/index.html
http://www.youtube.com/watch?v=BStiekPFKWI
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gevents.html
http://www.youtube.com/watch?v=xsB0v8GtVMw
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gobjects.html
http://www.youtube.com/watch?v=8RMHJe1ZpKM

Problem Set 4: Breakout

10

what more you can do with SPL. If you’ve any questions on usage, reach out via CS50
Discuss3 !

• Okay, now that you’ve been exposed to a bit of GUI programming, let’s turn our attention
to this problem set’s own distribution code. In a terminal window, execute

cd ~/Dropbox

if not already there, and then execute

wget http://cdn.cs50.net/2013/fall/psets/4/hacker4/hacker4.zip

to download a ZIP of this problem set’s distro into your appliance. You should see a
bunch of output followed by:

'hacker4.zip' saved

As before, if you instead see

unable to resolve host address

your appliance probably doesn’t have Internet access (even if your laptop does), in
which case you can try running connect50 or even restarting your appliance via
Menu > Log Off, after which you can try wget again.

Ultimately, confirm that you’ve indeed downloaded hacker4.zip by executing:

ls

Then, run

unzip hacker4.zip

3 https://www.cs50.net/discuss

https://www.cs50.net/discuss
https://www.cs50.net/discuss
https://www.cs50.net/discuss

Problem Set 4: Breakout

11

to unzip the file. If you then run ls again, you should see that you have a newly
unzipped directory called hacker4 as well. Proceed to execute

cd hacker4

followed by

ls

and you should see that the directory contains three files and one subdirectory:

◦ Makefile , which will let make know how to compile your program;

◦ breakout.c , which contains a skeleton for your program;

◦ spl , a subdirectory containing SPL; and

◦ spl.jar , a "Java archive" that contains code (written in a language called Java)
atop which SPL’s C library is written.

• Let’s see what the distribution code does. Go ahead and execute

make breakout

or, more simply,

make

to compile the distro. Then execute

./breakout

to run the program as is. A window like the below should appear.

Problem Set 4: Breakout

12

Problem Set 4: Breakout

13

Hm, not much of a game. Yet!

• Next try out the staff’s solution (to the standard edition) by executing the below from
within your own ~/Dropbox/hacker4 directory..

~cs50/pset4/breakout

A window like the below should appear.

Problem Set 4: Breakout

14

Problem Set 4: Breakout

15

How fun! Go ahead and click somewhere inside that window in order to play. The goal,
quite simply, is to bounce the ball off of the paddle so as to hit bricks with it. If you break
all the bricks, you win! But if you miss the ball three times, you lose! To quit the game,
hit control-c back in the terminal window.

Nice. Let’s make your implementation look more like that one. But, first, a tour!

• Open up breakout.c with gedit and take a moment to scroll through it to get a
sense of what lies ahead. It’s a bit reminiscent of the skeleton for Game of Fifteen, no?
But definitely some new functions in there, most from SPL. Let’s walk through it from
top to bottom.

◦ Atop the file you’ll see some familiar header files. We’ve also included time.h so
that you have access to a "pseudorandom number generator" (PRNG), a function
that can generate random (well, technically not-quite-random) numbers. We’ve also
included some header files from SPL. Because those files are included in this
problem set’s distribution code (in hacker4/spl/include), we’ve used, as is
required by C, double quotes (") around their filenames instead of the usual angled
brackets (< and >) because they’re not installed deep in the appliance itself.

◦ Next up are some constants, values that you don’t need to change, but because
the code we’ve written (and that you’ll write) needs to know these values in a few
places, we’ve factored them out as constants so that we or you could, theoretically,
change them in one convenient location. By contrast, hard-coding the same number
(pejoratively known as a "magic number") into your code in multiple places is
considered bad practice, since you’d have to remember to change it, potentially, in
all of those places.

◦ Below those constants are a bunch of prototypes for functions that are defined below
main . More on each of those soon.

◦ Next up is our old friend, main . It looks like the first thing that main does is "seed"
that so-called PRNG with the current time. (See man srand48 and man 2 time
if curious.) To seed a PRNG simply means to initialize it in such a way that the
numbers it will eventually spit out will appear to be random. It’s deliberate, then, that
we’re initializing the PRNG with the current time: time’s always changing. Were we
instead to initialize the PRNG with some hard-coded value, it’d always spit out the
same sequence of "random" numbers.

Problem Set 4: Breakout

16

After that call to srand48 , it looks like main calls newGWindow , passing in
a desired WIDTH and HEIGHT . That function "instantiates" (i.e., creates) a new
graphical window, returning some sort of reference thereto. (It’s technically a pointer,
but that detail, and the accompanying * , is, again, hidden from us by SPL.) That
function’s return value is apparently stored in a variable called window whose type
is GWindow , which happens to be declared in a gwindow.h header file that you
may have glimpsed earlier.

Next, main calls initBricks , a function written partly by us (and, soon, mostly
by you!) that instantiates a grid of bricks atop the game’s window.

Then main calls initBall , which instantiates the ball that will be used to play
Breakout. Passed into that function is window so that the function knows where to
"place" (i.e., draw) the ball. The function returns a GOval (graphical oval) whose
width and height will simply be equal (ergo a circular ball).

Called by main next is initPaddle , which instantiates the game’s paddle; it
returns a GRect (graphical rectangle).

Then main calls initScoreboard , which instantiates the game’s scoreboard,
which is simply a GLabel (graphical label).

Below all those function calls are a few definitions of variables, namely bricks ,
lives , and points . Below those is a loop, which is meant to iterate again and
again so long as the user has lives left to live and bricks left to break. Of course,
there’s not much code in that loop now!

Below the loop is a call to waitForClick , a function that does exactly that so that
the window doesn’t close until the user intends.

Not too bad, right? Let’s next take a closer look at those functions.

◦ In initBricks , you’ll eventually write code that instantiates a grid of bricks in the
window. Those constants we saw earlier, ROWS and COLS , represent that grid’s
dimensions. How to draw a grid of bricks on the screen? Well, odds are you’ll want
to employ a pair of for loops, one nested inside of the other. And within that
innermost loop, you’ll likely want to instantiate a GRect of some width and height
(and color!) to represent a brick.

Problem Set 4: Breakout

17

◦ In initBall , you’ll eventually write code that instantiates a ball (that is, a circle,
or really a GOval) and somehow center it in the window.

◦ In initPaddle , you’ll eventually write code that instantiates a paddle (just a
GRect) that’s somehow centered in the bottom-middle of the game’s window.

◦ Finally, in initScoreboard , you’ll eventually write code that instantiates a
scoreboard as, quite simply, a GLabel whose value is a number (well, technically,
a char* , which we once knew as a string).

◦ Now, we’ve already implemented updateScoreboard for you. All that function
does, given a GWindow , a GLabel , and an int , is convert the int to a
string (okay, char*) using a function called sprintf , after which it sets
the label to that value and then re-centers the label (in case the int has more
digits than some previous int). Why did we allocate an array of size 12 for our
representation of that int as a string ? No worries if the reason’s non-obvious,
but give some though as to how wide the most positive (or most negative!) int
might be. You’re welcome to change this function, but you’re not expected to.

◦ Last up is detectCollision , another function that we’ve written for you.
(Phew!) This one’s a bit more involved, so do spend some time reading through
it. This function’s purpose in life, given the ball as a GOval , is to determine
whether that ball has collided with (i.e., is overlapping) some other object (well,
GObject) in the game. (A GRect , GOval , or GLabel can also be thought of
and treated as a GObject , per http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/
spl/doc/gobjects.html.) To do so, it cuts some corners (figuratively but also kind
of literally) by checking whether any of the ball’s "corners," as defined by the
ball’s "bounding box", per the below (wherein x and y represent coordinates, and r
represents the ball’s radius) are touching some other GObject (which might be a
brick or a paddle or even something else).

http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gobjects.html
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gobjects.html

Problem Set 4: Breakout

18

Alright, ready to break out Breakout?

Breakout

Alright, if you’re like me, odds are you’ll find it easiest to implement Breakout via some
baby steps, each of which will get you closer and closer to a great outcome. Rather than
try to implement the whole game at once, allow me to suggest that you proceed as follows:

1. Try out the staff’s solution again (via ~cs50/pset4/breakout from within your own
~/Dropbox/pset4 directory) to remind yourself how our implementation behaves.
Yours doesn’t need to be identical. In fact, all the better if you personalize yours. But
playing with our implementation should help guide you toward yours.

2. Implement initPaddle . Per the function’s return value, your paddle should be
implemented as a GRect . Odds are you’ll first want to decide on a width and height
for your paddle, perhaps declaring them both atop breakout.c with constants. Then
calculate coordinates (x and y) for your paddle, keeping in mind that it should be initially
aligned in the bottom-middle of your game’s window. We leave it to you to decide
exactly where. Odds are some arithmetic involving the window’s width and height and
the paddle’s width and height will help you center it. Keep in mind that x and y refer to a
GRect’s top-left corner, not its own middle. Your paddle’s size

and location doesn’t need to match the staff’s precisely, but it

should be perfectly centered, near the window’s bottom. You’re

welcome to choose a color for it too, for which `setColor and
setFilled might be of interest. Finally, instantiate your paddle with newGRect .
(Take note of that function’s prototype at http://cdn.cs50.net/2013/fall/psets/4/pset4/
pset4/spl/doc/gobjects.html.) Then return the GRect returned by newGRect (rather

http://cdn.cs50.net/2013/fall/psets/4/pset4/pset4/spl/doc/gobjects.html.
http://cdn.cs50.net/2013/fall/psets/4/pset4/pset4/spl/doc/gobjects.html.

Problem Set 4: Breakout

19

than NULL , which the distribution code returns only so that the program will compile
without initPaddle fully implemented).

3. Now, initPaddle’s purpose in life is only to instantiate and
return a paddle (i.e., `GRect). It shouldn’t handle any of the paddle’s
movement. For that, turn your attention to the TODO up in main . Proceed to replace
that TODO with some lines of code that respond to a user’s mouse movements in such
a way that the paddle follows the movements, but only along its (horizontal) x-axis.
Look back at cursor.c for inspiration, but keep in mind that cursor.c allowed
that circle to move along a (vertical) y-axis as well, which we don’t want for Breakout,
else the paddle could move anywhere (which might be cool but not exactly Breakout).

4. Now turn your attention to the TODO in initBricks . Implement that function in such
a way that it instantiates a grid of bricks (with ROWS rows and COLS columns), with
each such brick implemented as a GRect . Drawing a GRect (or even a bunch of
them) isn’t all that different from drawing a GOval (or circle). Odds are, though, you’ll
want to instantiate them within a for loop that’s within a for loop. (Think back to
mario , perhaps!) Be sure to leave a bit of a gap between adjacent bricks, just like
we did; exactly how many pixels is up to you. And we leave it to you to select your
bricks' colors.

5. Now implement initBall , whose purpose in life is to instantiate a ball in the
window’s center. (Another opportunity for a bit of arithmetic!) Per the function’s
prototype, be sure to return a GOval .

6. Then, back in main , where there used to be a TODO , proceed to write some additional
code (within that same while loop) that compels that ball to move. Here, too, take
baby steps. Look to bounce.c first for ideas on how to make the ball bounce back
and forth between your window’s edges. (Not the ultimate goal, but it’s a step toward
it!) Then figure out how to make the ball bounce up and down instead of left and
right. (Closer!) Then figure out how to make the ball move at an angle. Then, utilize
drand48 to make the ball’s initial velocity random, at least along its (horizontal) x-
axis. Note that, per its man page, drand48 returns "nonnegative double-precision
floating-point values uniformly distributed between [0.0, 1.0)." In other words, it returns
a double between 0.0 (inclusive) and 1.0 (exclusive). If you want your velocity to be
faster than that, simply add some constant to it and/or multiply it by some constant!
Ultimately, be sure that the ball still bounces off edges, including the window’s bottom
for now.

Problem Set 4: Breakout

20

7. When ready, add some additional code to main (still somewhere inside of that while
loop) that compels the ball to bounce off of the paddle if it collides with it on its way
downward. The angle at which the ball bounces off the paddle should depend
on where the ball strikes the paddle; we leave it to you to decide on a formula.
Odds are you’ll want to call that function we wrote, detectCollision , inside that
loop in order to detect whether the ball’s collided with something so that, if so, you
can somehow handle such an event. Of course, the ball could collide with the paddle
or with any one of those bricks. Keep in mind, then, that detectCollision could
return any such GObject ; it’s left to you to determine what has been struck. Know,
then, that if you store its return value, as with

GObject object = detectCollision(window, ball);

you can determine whether that object is your game’s paddle, as with the below.

if (object == paddle)

{

 // TODO

}

More generally, you can determine if that object is a GRect with:

if (strcmp(getType(object), "GRect") == 0)

{

 // TODO

}

Once it comes time to add a GLabel to your game (for its scoreboard), you can
similarly determine if that object is GLabel , in which case it might be a collision
you want to ignore. (Unless you want your scoreboard to be something the ball can
bounce off of. Ours isn’t.)

if (strcmp(getType(object), "GLabel") == 0)

{

 // TODO

}

Problem Set 4: Breakout

21

8. Once you have the ball bouncing off the paddle (and window’s edges), focus your
attention again on that while loop in main and figure out how to detect if the
ball’s hit a brick and how to remove that brick from the grid if so. Odds are you’ll find
removeGWindow of interest, per http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/
spl/doc/gwindow.html. SPL’s documentation incorrectly refers to that function as
remove , but it’s indeed removeGWindow you want, whose prototype, to be
clear, is the below.

void removeGWindow(GWindow gw, GObject gobj);

9. Now decide how to determine whether the ball has zoomed past the paddle and
struck the window’s bottom edge, in which case the user should lose a life and
gameplay should probably pause until the user clicks the mouse button, as in the staff’s
implementation. Odds are detecting this situation isn’t all that different from the code
you already wrote for bouncing; you just don’t want to bounce off that bottom edge
anymore!

10.Next, implement initScoreboard in such a way that the function instantiates and
positions a GLabel somewhere in your game’s window. Then, enhance main in
such a way that the text of that GLabel is updated with the user’s score anytime the
user breaks a brick. Indeed, be sure that your program keeps track of how many lives
remain and how many bricks remain, the latter of which is inversely related to how
many points you should give the user for each brick broken; our solution awards one
point per brick, but you’re welcome to offer different rewards. A user’s game should
end (i.e., the ball should stop moving) after a user runs out of lives or after all bricks
are broken. We leave it to you to decide what to do in both cases, if anything more!

11.Lastly, amaze us by integrating at least two (2) of the following features into your game:

• Implement God Mode whereby, if the program is run with ./breakout GOD , the
game ignores the user’s mouse movements and instead moves the paddle itself
in perfect lockstep with the ball along its (horizontal) x-axis so that the ball never
misses the paddle.

• Implement a shrinking-paddle mechanism whereby the paddle’s width decreases
as bricks are broken; we leave it to you to decide on a formula.

• Implement a variable-scoring mechanism whereby bricks higher in the game’s grid
are worth more points than are bricks lower in the game’s grid; we leave it to you
to decide on a formula.

http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gwindow.html
http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gwindow.html

Problem Set 4: Breakout

22

• Implement a variable-velocity mechanism whereby the ball’s velocity (along one or
both axes) increases as bricks are broken; we leave it to you to decide on a formula.

• Implement lasers, whereby clicking the mouse button during gameplay results in
the paddle shooting one or two laser beams upward toward bricks, whereby those
beams can destroy them just like the ball can. However, if a beam strikes the ball
itself, gameplay must end.

Because this game expects a human to play, no check50 for this one! Best to invite
some friends to find bugs!

How to Submit

Step 1 of 2

• When ready to submit, open up a Terminal window and navigate your way to ~/
Dropbox . Create a ZIP (i.e., compressed) file containing your entire hacker4
directory by executing the below. Incidentally, -r means "recursive," which in this case
means to ZIP up everything inside of hacker4 , including any subdirectories (or even
subsubdirectories!).

zip -r hacker4.zip hacker4

If you type ls thereafter, you should see that you have a new file called
hacker4.zip in ~/Dropbox . (If you realize later that you need to make a change
to some file and re-ZIP everything, you can delete the ZIP file you already made with
rm hacker4.zip , then create a new ZIP file as before.)

• Once done creating your ZIP file, open up Chrome inside of the appliance (not on your
own computer) and visit cs50.net/submit4 , logging in if prompted.

• Click Submit toward the window’s top-left corner.

• Under pset4 on the screen that appears, click Upload New Submission.

• On the screen that appears, click Add files…. A window entitled Open Files should
appear.

4 https://www.cs50.net/submit

https://www.cs50.net/submit
https://www.cs50.net/submit

Problem Set 4: Breakout

23

• Navigate your way to hacker4.zip , as by clicking jharvard, then double-clicking
Dropbox. Once you find hacker4.zip , click it once to select it, then click Open.

• Click Start upload to upload your ZIP file to CS50’s servers.

• On the screen that appears, you should see a window with No File Selected. If you
move your mouse toward the window’s lefthand side, you should see a list of the files
you uploaded. Click each to confirm the contents of each. (No need to click any other
buttons or icons.) If confident that you submitted the files you intended, consider your
source code submitted! If you’d like to re-submit different (or modified) files, simply
return to cs50.net/submit5 and repeat these steps. You may re-submit as many times as
you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

• Head to https://forms.cs50.net/2013/fall/psets/4/ where a short form awaits. Once you
have submitted that form (as well as your source code), you are done!
This was Problem Set 4.

5 https://www.cs50.net/submit

https://www.cs50.net/submit
https://forms.cs50.net/2013/fall/psets/4/
https://www.cs50.net/submit

	Problem Set 4: Breakout
	Table of Contents
	Objectives
	diff pset4 hacker4
	Academic Honesty
	Reasonable
	Not Reasonable

	Scores
	Shorts
	Backstory
	Getting Started
	Breakout
	How to Submit
	Step 1 of 2
	Step 2 of 2

