Quiz O Review Session
Part O

October 14, 2013
Karen Xiao

Hey! You have a quiz on
Wednesday!

cs50.net/quizzes

Let’s get started!

Binary

LK 1 2l
LK]

LK 1]

Binary - Basics

170100011
27 26 25 24 23 22 21 20
1*27 + 0*26 + 1*2° + 0*24 + 0*23 +
0*22 + 1*21 + 1*20=163

Binary — Binary to Decimal
1=1*20=1
10 =1%21 + 0%20= 2
1M1 =121 +1%20=3
100 = 1*22 + 0*21 + 0*2°=4
101 = 1*22+0%21+1*20=5

Binary — Arithmetic

101011 14205
+ 010001 +19418
111100 33623

ASCI]

* Mapping between characters and numbers

* For expressing alphabetic, numeric, and other
characters in binary, the “language” that is
understood by a computer

ASCII - Math

* Because characters are fundamentally just
numbers, we can do math with chars!

A = 65;
B = + 1;
C = - 1;
D = 68;
printf(, A, B, C, D);

What will this print out?

ASCII - Math

* Because characters are fundamentally just
numbers, we can do math with chars!

A = 65;
B = + 1;
C = - 1;
D = 68;
printf(, A, B, C, D);

What will this print out? ABCD

ASCI]

* Note: ‘5" does not equal 5
* How might we convert them?

ASCI]

* Note: ‘5" does not equal 5
* How might we convert them?

ISI_(OI — 5
lol +5 — 15)

Algorithms

* A step-by-step set of instructions for how to
perform a certain task (like a recipe?)

n n/2

time to solve

log n

size of problem

Pseudocode

* English-like syntax meant to represent a programming
EN{VETLE

 Example: ask a user to guess my favorite number
get user’s guess
if guess is correct
tell them they are correct
else
tell them they are not correct

Source Code

#include <cs50.h>
#include <stdio.h>

int main(void)
{

printf ("What is Karen’s favorite number: ");
int n = GetInt();

if (n == 8)
{
printf ("That is correct!\n");

}

else

{

printf ("That is incorrect!\n");

So how does your computer
understand that?

Compiler

make runs a compiler named clang for you
with some command-line arguments.

clang will then compile your source code to

object code (0’s and 1’s that your computer
understands)

Source code -> Compiler -> Object code
But more on that later...

Scratch

int foo = 0;
for (int i = 0; 1 < 10; i++)
{

foo++;

printf ("Foo: %i\n", foo);

Let’s look at some of these building
blocks that make up a program.

Boolean Expressions

Boolean expressions are those that have only two possible
values: true or false, yes or no, on or off, 1 or O.

bool happy = true;
1f (happy)
{

printf ("smile");

Boolean Operators

&& and

[or

! not

== equal to

<= less than or equal to

>= greater than or equal to
< less than

> greater than

Conditions

Conditions are forks in the logic of a program that execute depending on
whether or not certain criteria are met.

int x = GetInt();
if (x < 8)
{
printf ("%$i is less than 8", x);
}
else if (x > 8)
{
printf ("%i is greater than 8", x);
}
else

{
printf ("%$i is equal to 8", Xx);

Loops

int x;

ofe

{
printf ("Give me an int\n");
x = GetInt();

}
while (x != 8);

Loops

for
while
do while

How do we know which one to use?

Loops

e for
— We know how many times we want to iterate
* while
— We need some condition to be true to keep running

* do while
— Like while, but we want our code to run at least once

Loops - for

for (i1nitialization; condition; update)

{

execute this code

Loops - while

initialization

while (condition)

{
execute this code
update

Loops — do while

lnitialization
do
{

execute this code
update

J

while (condition);

Functions

 Some functions we’ve seen already
— main
* 1nt main(int argc, string argvl|[])

—printf, GetInt, toupper
* These have been implemented for us already

* But now you can write your own!

Functions

int cube(int input)

{
int output = input * input * input;
return output;

Functions — Why?

Organization. Functions help to break up a complicated problem
into more manageable subparts and help to make sure concepts
flow logically into one another.

Simplification. Smaller components are easier to design, easier to
implement, and far easier to debug. Good use of functions makes
code easier to read and problems easier to isolate.

Reusability. Functions only need to be written once, and then can

be used as many times as necessary, so you can avoid duplication
of code.

Threads

* Threads are the concept of multiple sequences of
code executing at the same time

* |In Scratch, for example, multiple sprites execute
scripts simultaneously

* Original example in class where we counted the
number of people in the room

Events

* Events are the concept of different parts of
your code “communicating” with each other

* |n Scratch, this is the Broadcast/When |
Receive blocks

* |In Problem Set 4, Gevent (waitForClick)

Linux

ls
— stands for "list," shows the contents of the current directory

mkdir
— stands for "make directory," creates a new folder

cd
— stands for "change directory," the equivalent of double clicking on a
folder
rm
— stands for "remove," deletes a file
rmdir

— stands for "remove directory," deletes a directory

Libraries

#include <stdio.h>
— what’s in the stdio library?

#include <csbh0.h>
— what’s in the ¢s50 library?

Libraries

#include <stdio.h>
— what’s in the stdio library?
* printt
#include <cs50.h>

— what’s in the ¢s50 library?
* GetInt (), GetString(), etc.
* string

Types

int 4 bytes
char 1 byte
float 4 bytes
double 8 bytes
long 4 bytes
long long 8 bytes
char*,int*, etc. 4 bytes

Standard Output

The printf function can take many different format codes:
* %cfor char

* %iforint

* %f for float

* %lld for long long

* %s for string

A few escape sequences:

* \nfor newline

* \rfor carriage return (think typewriter)
* \'forsingle quote

* \"for double quote

* \\for backslash

* \Ofor NUL terminator

