Multiple Choice.

0. b
1. b
0(MG).
2.

This is CS50.
Harvard University Fall 2013

Quiz 0

Answer Key

Answers other than the below may be possible.

Q

Bogo Sort n

Bubble Sort n

Insertion Sort n

Linear Search 1
Merge Sort nlogn nlogn

Selection Sort n’

Phew, Scratch.

3. #include <stdio.h>

int main(void)

{

for

{

}

(int i = 50; 1 >= 0; 1i--)

printf ("$i\n", 1i);

0<7

This is CS50.
Harvard University Fall 2013

4. #include <stdio.h>
void cough (void) ;

int main(void)
{
for (int i = 0; i < 3; i++)
{
cough () ;

}

void cough (void)
{

printf ("cough\n") ;
}

Itsa Mario again.

5. #include <stdio.h>

int main(void)
{ for (int 1 = 1; 1 <= 7; 1i++)
{ for (int 7 = 1; j <= i; J++)
{ printf ("#");
;rintf("\n");

CS50 Library 2.0.

6. int GetPositivelInt (void)
{
int n;
while (true)
{
n = GetInt (),
if (n >= 1)
{
break;
}
else
{
printf ("Retry: ");
}
}

return n;

1<7

This is CS50.
Harvard University Fall 2013

7. int RandomInt (int a, int b)
{

return drand48() * (b - a) + a;

}

Swapfest.

8.

swap

main

2<7

This is CS50.
Harvard University Fall 2013

#include?

10. int atoi(char* s)
{
if (s == NULL)
{

return 0;

int value = 0;
for (int i = 0, n = strlen(s); i < n; i++)

if (s[i] < '0" || s[i] > '9")

return 0;
}
value *= 10;
value += s[i] - '0';
}

return value;

11. int strlen(char* s)

if (s == NULL)
{

return 0;
}
int length = 0;
for (char* t = s; *t != "\0'; t++)
{
length++;
}

return length;

3<7

This is CS50.
Harvard University Fall 2013

Switching gears.

12. #include <cs50.h>
#include <stdio.h>

int main(void)
{
= GetInt

int (
== 1 || n

if |
{

n) 7
n == 2)

printf ("small\n");
;lse if (n == 3)
{ printf ("medium\n") ;
;lse if (n == 4 || n == 5)
{ printf ("large\n");
}

Did you mean: recursion
13. 5+4+3+2+1+0=15

14. Because sigma calls itself recursively, each time passing itself m - 1, sigma won't hit its base case
if initially passed -5, since m will not hit 0 (at least not until m happens to wrap around from
-2147483648 to 0 because of overflow). And so the recursive calls' stack frames will eventually
overrun the heap, inducing a segfault.

This is not 50.

15, 1-32+1-16+1-1=49

Making progress.

16. During preprocessing, directives like #include are processed, the result of which is to insert the
contents of header files (e.g., stdio.h) and any declarations therein into the file being pre-
processed. During compiling, the preprocessed C code is translated into assembly instructions,
possibly with optimizations applied. During assembling, the assembly instructions are translated
into machine code and stored in an object (. o) file. During linking, the object code for main is
combined with (i.e., linked against) object code from other files (e.g., C's standard library), the
result of which is an executable file.

4<7

This is CS50.
Harvard University Fall 2013

Making sense.

17.

18.

Because 50 and 100 are both of type int, the expression 50 / 100 evaluates to an int as well,
in which case everything after the decimal is discarded, and so 0.5 becomes 0. It is that 0 that's
then implicitly cast to a f1oat, stored in dollars, and printed to 2 decimal places, and so the 0
is printed as 0. 00.

./think

Short answers.

19.

20.

21.

22.

23.

Selection Sort doesn't know which of its not-yet-sorted elements is smallest until it's traversed
them all, since the smallest might be the last. To sort n elements, then, Selection Sort must look
at n elements, then n — 1 elements, then n — 2 elements, and so forth, which adds up to n(n + 1)/2,
which is on the order of n’.

When GetString gets a string from a user, it allocates memory for that string on the heap
and returns a pointer thereto. But only recently did we learn that we should really be calling free
on that pointer when done with the string in order to return the memory to the operating
system. By not calling free, we've been leaking (allocating and never de-allocating) memory.

Some algorithms are, by their own definition, recursive (e.g, Merge Sort), in which case it's
straightforward (and thus convenient) to implement them in code recursively. An iterative
implementation, by contrast, might take more time to write and might even prove less readable.

Recursive implementations of algorithms tend to consume more memory than necessary if
recursive calls' frames pile up on the stack (without being optimized away by a compiler). They
are also vulnerable to stack overflow if more recursive calls are made than can even fit on the
stack. In such cases, an iterative implementation might prove more memory-efficient and more
capable of handling large inputs.

Whereas Caesar's cipher only uses a one-byte key (for which there are 256 possible values),
Vigenére's cipher uses an n-byte keyword (for which there are 2% possible values, given that
there are 8 bits in a byte). Cracking Vigenere's cipher, as by trying all possible keys, therefore
requires more effort than does cracking Caesar's cipher (assuming n is greater than 1), and so
Vigenere's cipher is considered more secure.

5<7

This is CS50.
Harvard University Fall 2013

Ponies.

24. The classmate has called printf but has omitted

#include <stdio.h>
atop the program's file. Adding that line should fix.

25. The classmate has tried to use a variable, n, without first declaring it. (Or, even if declared
somewhere, it's at least not in scope.) Declaring n within the same scope in which it's being used

(or globally) should fix.

26. Try it (in Hangouts)!

6<7

