
Review Session 1
R.J.  Aquino, ’14

Monday, November 18, 13



Quiz 1

Monday, November 18, 13



Quiz 1 Information

• https://cs50.harvard.edu/quizzes/2013/1

•Cumulative, but with an emphasis on material covered since 
Quiz 0

• Typically more challenging than Quiz 0

•Use CS50 Discuss and take practice quizzes!

Monday, November 18, 13

https://cs50.harvard.edu/quizzes/2013/1
https://cs50.harvard.edu/quizzes/2013/1


Quiz 1 Review Session

•This is NOT an exhaustive list of topics

• This is NOT necessarily everything you need to know about 
any given topic

• This IS meant to review topics we covered in lecture and 
section

Monday, November 18, 13



File I/O
Week 7 Monday, Section 6, Problem Set 5

Monday, November 18, 13



File I/O

• fopen, fclose, fwrite, fread, fseek

•You should be pretty familiar with these functions after pset5!

•What are common file-related bugs?

• Forgetting to check if fopen returned NULL or succeeded

• Forgetting to fclose a file that you fopen’d

• Forgetting to check if you have reached the end of a file

Monday, November 18, 13



Structs
Week 7 Monday

Monday, November 18, 13



Structs
// structure representing a student
typedef struct
{
    string name;
    int age;
}
student;

Monday, November 18, 13



Structs, cont.
// declare an instanct of struct like any variable
student s;

// set fields of a struct with '.'
s.name = "RJ";
s.age = 21;

// update fields the same way
s.name = "R.J.";

// access fields the same way
printf("%s is %d years old\n.", s.name, s.age);

Monday, November 18, 13



Structs, cont.
// you often will have a pointer to a struct
student* ptr = &s;

// to get to the fields, you first need to dereference
(*ptr).age = 22; 

// the arrow syntax is a nice shortcut for this!
ptr->age = 22;

Monday, November 18, 13



Data Structures

Monday, November 18, 13



Data Structures
1. Understand each structure at a high level

• Can you explain how it works in English?

2. Understand the implementation/operations

• E.g., can you insert into a linked list?

• Can you write C code related to these structures?

• Understand pointers and structs

3. Know the runtimes/limitations

• E.g., how fast is a hash table lookup?

• Understand “Big-O” notation

Monday, November 18, 13



Linked Lists
Week 7 Monday and Wednesday, Section 7

Monday, November 18, 13



Linked Lists
High Level

Monday, November 18, 13



Linked Lists
High Level

• Easy to insert - O(1) for unsorted lists

•Hard to find - O(n)

•Compare with arrays - when is a linked list better? When is an 
array better?

Monday, November 18, 13



Linked Lists
Implementation

typedef struct node
{
    int n;
    struct node* next;
}
node;

Monday, November 18, 13



Linked Lists
Implementation

typedef struct node
{
    int n;
    struct node* next;
}
node;

Could be any type. In pset6, we 
stored char* or char arrays!

Monday, November 18, 13



Linked Lists
Operations

node* head;
bool insert(int new_n)
{

}

n = 10

next =  

head  = 

n = 15

next = NULL 

Monday, November 18, 13



Linked Lists
Operations

n = 10

next =  

head  = 

n = 15

next = NULL 

node* head;
bool insert(int new_n)
{
    // make a new node
    node* new_node = malloc(sizeof(node));
    if (new_node == NULL)
    {
       return false;
    }
    
    // add value to node
    new_node->n = new_n;
    new_node->next = head;

    // set head to our new node
    head = new_node; 
    return true;
}

Monday, November 18, 13



Linked Lists
Operations

node* head;
bool insert(int new_n)
{
    // make a new node
    node* new_node = malloc(sizeof(node));
    if (new_node == NULL)
    {
       return false;
    }

    // add value to node
    new_node->n = new_n;
    new_node->next = head;

    // set head to our new node
    head = new_node; 
    return true;
}

n = 10

next =  

head  = 

n = 15

next = NULL 

n = ???

next =  ???

new_node  = 

Monday, November 18, 13



Linked Lists
Operations

node* head;
bool insert(int new_n)
{
    // make a new node
    node* new_node = malloc(sizeof(node));
    if (new_node == NULL)
    {
       return false;
    }

    // add value to node
    new_node->n = new_n;
    new_node->next = head;

    // set head to our new node
    head = new_node; 
    return true;
}

n = 10

next =  

head  = 

n = 15

next = NULL 

n = new_n

next =  

new_node  = 

Monday, November 18, 13



Linked Lists
Operations

node* head;
void insert(int new_n)
{
    // make a new node
    node* new_node = malloc(sizeof(node));
    if (new_node == NULL)
    {
       return false;
    }

    // add value to node
    new_node->n = new_n;
    new_node->next = head;

    // set head to our new node
    head = new_node; 
    return true;
}

n = 10

next =  

head  = 

n = 15

next = NULL 

n = new_n

next =  

new_node  = 

Monday, November 18, 13



Linked Lists
Operations

node* head;
void insert(int new_n)
{
    // make a new node
    node* new_node = malloc(sizeof(node));
    if (new_node == NULL)
    {
       return false;
    }

    // add value to node
    new_node->n = new_n;
    new_node->next = head;

    // set head to our new node
    head = new_node;
    return true; 
}

n = 10

next =  

head  = 

n = 15

next = NULL 

n = new_n

next =  

Monday, November 18, 13



Linked Lists
Operations

n = 10

next =  
head  = 

n = 15

next = NULL 

• When in doubt, draw a picture!

• Try to implement delete and find!

• Also note that there are “doubly” linked lists, where 
each node stores a “prev” pointer too!

Monday, November 18, 13



Stacks
Week 8 Monday

Monday, November 18, 13



Stacks
High Level

Monday, November 18, 13



Stacks
High Level

• “Last in, first out” - LIFO

•Two operations - push and pop

•We can implement these functions using an array.

Monday, November 18, 13



Stacks
Array Implementation

typedef struct
{
    int trays[CAPACITY];
    int size;
}
stack;

Monday, November 18, 13



Stacks
Array Implementation

typedef struct
{
    int trays[CAPACITY];
    int size;
}
stack;

How would we implement push?

Monday, November 18, 13



Stacks
Array Implementation

typedef struct
{
    int trays[CAPACITY];
    int size;
}
stack;

stack s;
bool push(int n)
{
    s.trays[s.size] = n;
    s.size++;
    return true;
}

Monday, November 18, 13



Stacks
Array Implementation

typedef struct
{
    int trays[CAPACITY];
    int size;
}
stack;

Does this work?

Monday, November 18, 13



Stacks
Array Implementation

typedef struct
{
    int trays[CAPACITY];
    int size;
}
stack;

Fails if size == CAPACITY

Monday, November 18, 13



Stacks
Array Implementation

typedef struct
{
    int trays[CAPACITY];
    int size;
}
stack;

stack s;
bool push(int n)
{
    if (s.size == CAPACITY)
    {
        return false;
    }
    
    s.trays[s.size] = n;
    s.size++;
    return true;
}

Monday, November 18, 13



Stacks
Array Implementation

typedef struct
{
    int trays[CAPACITY];
    int size;
}
stack;

What else could we ask about?
• implementation of pop
• non-array implementation
• non-int implemenation
• look at past quizzes!!

Monday, November 18, 13



Queues
Week 8 Monday

Monday, November 18, 13



Queues

• “First in, first out” - FIFO

•Two operations - enqueue, dequeue

•Again, can be implemented using an array

Monday, November 18, 13



Queues

typedef struct
{
    int numbers[CAPACITY];
    int front;
    int size;
}
queue;

Monday, November 18, 13



Queues

typedef struct
{
    int numbers[CAPACITY];
    int front;
    int size;
}
queue;

The index of the next element 
to dequeue (starts at 0)

Monday, November 18, 13



Queues

typedef struct
{
    int numbers[CAPACITY];
    int front;
    int size;
}
queue;

Important things to keep track of:
• Wrapping around if 
front + size > CAPACITY

Monday, November 18, 13



Hash Tables
Week 7 Wednesday, Section 7

Monday, November 18, 13



Hash Tables

•A structure that aims for O(1) insertion and O(1) lookup

• In CS50, implemented as an array of linked lists

• Key component - hash function

•Converts our input (say, a word) into a number

•Used as an index into our array.

Monday, November 18, 13



Hash Tables

..."
"
"
"
"
"

..."
"
"

0
"
"
"

12"
"
"15"
"
"

1
"
"
"

2
"
"
"

..."
"
"
"
"
"

10"
"

Hash%
Function%

banana"
"
"apple"
"
"

cantaloupe"
"
"

mango"
"
"

kiwi"
"
"
pear"
"
"

apple"
"
"
banana"
"
"
cantaloupe"
"
"kiwi"
"
"mango"
"
"pear"
"
"Monday, November 18, 13



Hash Tables

•What happens on collision?

• Instead of storing one value at, say, hashtable[3], store a 
linked list!

•Most of you implemented this for pset6, but check out Rob’s 
postmortem for more implementation details!

Monday, November 18, 13



Tries
Week 7 Wednesday

Monday, November 18, 13



Tries
High Level

Monday, November 18, 13



Tries
High Level

•Designed to store data alongside a keyword input, like a hash 
table. 

• In the case of pset6, the data is “am I a word”

• Insertion and lookup in O(length of word)

Monday, November 18, 13



Tries
Implementation

typedef struct node
{
    bool is_word;
    struct node* children[27];
}
node;

Monday, November 18, 13



Trees/Binary Search Trees
Week 8 Monday

Monday, November 18, 13



Trees

Monday, November 18, 13



Trees

• Like a trie, a tree is a structure of nodes, where each node has 
0 or more children. In a trie, we stated that each node had up 
to 27 children.

•A common type of tree is a “binary tree”, where each node 
has 0, 1, or 2 children.

Monday, November 18, 13



Binary Trees
typedef struct node
{
    int n;
    struct node* left;
    struct node* right;
}
node;

Monday, November 18, 13



Binary Trees

•How is a binary tree useful?

• If we make rules about where we put nodes, we can make 
search faster.

• In a binary search tree, all nodes on the left subtree of a node 
have a smaller value than the root node, and all nodes on the 
right subtree have a greater value than the root node.

Monday, November 18, 13



“In a binary search tree, all nodes on the 
left subtree of a node have a smaller value 
than the root node, and all nodes on the 
right subtree have a greater value than the 
root node.”

10

15

14

7

3 509

Monday, November 18, 13



Search:

10

15

14

7

3 509

Find 14

Monday, November 18, 13



Search:

10

15

14

7

3 509

Find 14

Monday, November 18, 13



Search:

10

15

14

7

3 509

Find 14

14 is bigger than 10, so 
we should try the right

Monday, November 18, 13



Search:

10

15

14

7

3 509

Find 14

14 is smaller than 15, so 
we should try the left

Monday, November 18, 13



Search:

10

15

14

7

3 509

Find 14

We found 14!

Monday, November 18, 13



Search:
Implementation

bool search(int n, node* tree)
{
    if (tree == NULL)
    {
        return false;
    }
    else if (n < tree->n)
    {
        return search(n, tree->left);
    }
    else if (n > tree->n)
    {
        return search(n, tree->right);
    }
    else
    {
        return true;
    }
}

Monday, November 18, 13



BSTs

•Things we could ask you to do:

•Write insert

•Write an iterative version

•Compare runtimes/explain when you would want to use a 
BST over a hashtable, for instance.

Monday, November 18, 13


