
this is week 7

fall 2013

playlist50
Ya Hey (Vampire Weekend)

Mountain Sound (Of Monsters and Men)
Monster Mash (Bobby Pickett & The Crypt-Kickers)

agenda

resources

linked lists

hash tables

resources

lecture notes & source code

cs50.net/shorts

study.cs50.net

man

Google

cs50.net/discuss

ohs

me!

pset6

gdb

valgrind --leak-check=full

diff -y

http://sayat.me/cs50

linked lists

i.qkme.me/3toh4j.jpg

node

typedef struct node

{

 int n;

 struct node* next;

}

node;

node

node new_node;

new_node.n = 1;

printf("%i\n", new_node.n);

node* ptr_node = &new_node;

printf("%i\n", (*ptr_node).n);

printf("%i\n", ptr_node->n);

insert

http://www.cs.grinnell.edu/~walker/courses/153.sp09/readings/reading-lists-c.shtml

find

http://www.cs.grinnell.edu/~walker/courses/153.sp09/readings/reading-lists-c.shtml

delete

http://www.cs.grinnell.edu/~walker/courses/153.sp09/readings/reading-lists-c.shtml

your turn: linked.c

Write a function that inserts an int into a

linked list. Keep the list sorted from

smallest to largest. Do not insert

duplicates. Let the user know whether or not

the insert was successful. Don't worry about

freeing nodes at the end of the program.

bool insert_node(int value);

Skeleton code has been provided for you.

strategy

// logic

draw a picture

write some pseudocode

// syntax

map it onto C

code the program

your turn: linked.c

Write a function that prints out all of

the ints in a linked list. Print out the

number of each node (0-indexed) as well.

void print_nodes(node* list);

Skeleton code has been provided for you.

your turn: linked.c

Write a function that frees all of the

nodes in a linked list before the program

exits.

void free_nodes(node* list);

Skeleton code has been provided for you.

hash tables

#######

hash tables

array + hash function

0) key

1) value = hash_function(key)

2) array[value] = key

http://en.wikipedia.org/wiki/Hash_table

.	
 .	
 .	

.	
 .	
 .	

potential pitfalls

What make a good

hash function?

0) deterministic

1) returns valid indices

potential pitfalls

What if two keys map to the

same value?

0) linear probing

1) separate chaining

http://en.wikipedia.org/wiki/Hash_table

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

.	
 .	
 .	

