
node.js
kevin schmid

Computer Systems: A Programmer's Perspective, Second Edition

Computer Systems: A Programmer's Perspective, Second Edition

Web Servers

● Receives HTTP request, issues HTTP
response

● Reminder about HTTP
● In the CS50 Appliance, Apache is set up to

work with PHP
○ PHP: scripting language
○ C$50 Finance

Web Servers

● When a request is received, must determine
appropriate action to take:
○ Serve a static file (index.html, picture.jpg,

thisisnotavideo_i_promise.mp4)
○ Run a script, like a PHP program (dynamic)
○ And more…

● Then issue response…

How can a web server handle
lots of users at same time?

Apache’s Solution

● Depending on configuration, Apache
handles requests in separate threads or
processes
○ For more, take courses in systems (CS61)
○ Allows for concurrent handling of requests

● Are there any issues with this approach?
○ Threads/processes are expensive: memory, cost of

context switch

Observation
● For certain web applications, much of the time spent

handling a request is time… waiting.
○ Getting data from a database (e.g., MySQL)
○ Reading a file from the computer’s disk
○ I/O tasks

● And not that much time is spent doing computational
work.

● Chat servers, for one

So...

● Recap: Apache / similar web servers fork
threads/processes for each request. Can be
wasteful, since most time spent is time
waiting.

● This begs the question: do we even need
multiple threads or processes?

Idea
● Let’s only use one thread that constantly checks to see

if new things have happened
○ Somebody made a request to the server!
○ Something came back from the database!
○ That file we were looking for is ready for reading!

● When these things happen, run the (non-
computationally-intensive) code that does the useful
stuff

● Implications?

Idea (continued)

● Called an event loop, and is the basic
concept behind node.js and similar event-
driven systems

● But… how do we make this happen?
● Consider this C code:

FILE *f = fopen(“new_katy_perry_song.mp3”, “r”);
// work with `f`

void code(FILE *f) {

 // do stuff with f

}

fopen(“new_katy_perry_song.mp3”, “r”, code);
// do other stuff, but can’t assume file is
open here

node.js

● Offers the kind of framework you need to
build event-driven servers like this
○ Asynchronous I/O libraries
○ Event loop

● … in JavaScript!
○ Built on top of Google’s V8 JavaScript
○ Why is this striking?

github.com/kevinschmid/nodecode

