
1

Week 1, continued

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Formula SAE at MIT .. 1

Introduction ... 1

C ... 2

Functions and Syntax ... 2

Compilers, Commands, and Libraries ... 3

Conditions ... 6

Boolean Expressions .. 7

Switches .. 8

Loops ... 8

Variables ... 9

Functions and Arguments ... 9

Formula SAE at MIT

• Ansel Duff '15 speaks about engineering opportunity at MIT. Formula SAE builds

electric cars and enters competitions. Engineers work directly on the car, while

computer scientists write code controlling these cars. Contact fsae@mit.edu1 for more

information.

Introduction

• Experience the power of a bookbook™2 is a humorous take on Apple’s marketing,

emphasizing an IKEA catalog’s "features" like its ease of use and infinite battery life.

• Section by Friday at noon.

1 mailto:fsae@mit.edu
2 http://youtu.be/MOXQo7nURs0

mailto:fsae@mit.edu
http://youtu.be/MOXQo7nURs0
mailto:fsae@mit.edu
http://youtu.be/MOXQo7nURs0

Week 1, continued

2

• Supersections3 next Sunday, with one less comfortable and one more comfortable.

• Problem Set 04 due Thursday at noon, unless a late day is used. Problem Set 15

will use C.

• Support available at office hours in four dining halls, with the schedule at http://

cs50.harvard.edu/hours.

• Questions can also be asked and answered online at http://cs50.harvard.edu/discuss.

• Every Friday at 1:15pm CS50 hosts a lunch at Fire and Ice for students and staff to

get to know each other. RSVP at http://cs50.harvard.edu/rsvp.

C

Functions and Syntax

• A volunteer from the audience, Alana, will represent the [say] block from Scratch.

David will give her an argument, a white sheet of paper, on which he writes the words

hello, world . By handing her the argument, David is telling her what to say.

• Now we have her put on a name tag that says printf . Alana writes the input given

on the white paper on the touchscreen, simulating the effect of the printf function.

• Another volunteer, Javier, will represent the GetString function. He takes a white

sheet of paper and gets a name from the audience, and then brings it back.

• Alana now gets a sheet of paper that has hello, __ and the sheet of paper from

Javier. She uses the name on the second sheet of paper, Jonathan , to fill in the

blank on the first sheet.

• Recall that the CS50 Appliance is an operating system, called Ubuntu Linux, running

in a window on your own computer, so everyone in the class has the same system to

program in.

• gedit is the text editor in which we write the code, and terminal is the blinking prompt

where we type in commands. It is a CLI, or command-line interface, as opposed to a

GUI, a graphical user interface.

3 http://cs50.harvard.edu/sections/1
4 http://cs50.harvard.edu/psets/0
5 http://cs50.harvard.edu/psets/1

http://cs50.harvard.edu/sections/1
http://cs50.harvard.edu/psets/0
http://cs50.harvard.edu/psets/1
http://cs50.harvard.edu/hours
http://cs50.harvard.edu/hours
http://cs50.harvard.edu/discuss
http://cs50.harvard.edu/rsvp
http://cs50.harvard.edu/sections/1
http://cs50.harvard.edu/psets/0
http://cs50.harvard.edu/psets/1

Week 1, continued

3

Compilers, Commands, and Libraries

• Once we write code, recall that we need to enter commands like make hello that

takes source code and converts it to object code, or zeroes and ones.

• The object code is run with a command like ./hello , with the . representing the

current directory, and the / separates the directory from the file name, so we are

running the program named hello in the current folder.

#include <stdio.h>

int main(void)

{

 printf("hello, world\n");

}

• Let’s take a closer look at the above code.

Line 1 is including functions that people have written in the past, in this case

functions in a file called stdio.h , in particular printf .

Line 3, main , is like the [when (green flag) clicked] block, starting

the program.

Lines 4 and 6, curly braces, simply hold some code together.

Line 5, printf , is a function that prints to a screen, with the parentheses

surrounding the inputs to the function.

Every time we call a function, we will use parentheses, even if they are empty.

Strings are surrounded by double quotes.

\n is telling printf to output a new line.

Finally, a semicolon simply ends one instruction.

• You will learn to see the correct placement of these syntactical details as time goes on.

• Source code is passed into a compiler that generates patterns of zeroes and ones.

• make is not a compiler, but calls on clang , an actual compiler. Other compilers

include Visual Studio and gcc. Let’s compile and run:

jharvard@appliance (~): make hello

Week 1, continued

4

clang -ggdb3 -O0 -std=c99 -Wall -Werror hello.c -lcs50 -lm -o hello

• rm is the command to remove something, for example rm hello .

• So now we try to compile with clang ourselves:

jharvard@appliance (~): clang hello.c

jharvard@appliance (~): ./hello

bash: ./hello: No such file or directory

jharvard@appliance (~):

• bash is the name of the prompt we’re using, and it can’t find ./hello .

• We run ls to see what is in the current directory, and see a.out . Back in the day,

the default output for the compiler was decided to be a.out , so that is our compiled

program.

• To rename a file, we use mv , short for move.

jharvard@appliance (~): mv a.out hello

jharvard@appliance (~): ./hello

hello, world

• Let’s add code to our program:

#include <stdio.h>

int main(void)

{

 printf("state your name: ");

 string s = GetString();

 printf("hello, world\n");

}

• Now we get the same errors as last time:

jharvard@appliance (~): clang hello.c

hello.c:6:5: error: use of undeclared identifier 'string'; did you mean

 'stdin'?

 string s = GetString();

 ^~~~~

 stdin

...

Week 1, continued

5

• We need to include cs50.h , training wheels that include functions like GetString .

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 printf("state your name: ");

 string s = GetString();

 printf("hello, world\n");

}

• But the compiler doesn’t know to combine the object code of both hello and the

object code of cs50.h . So we have to say

jharvard@appliance (~): clang hello.c -lcs50

• Now the program compiles and runs as a.out , but still says only hello, world .

We quickly fix this bug:

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 printf("state your name: ");

 string s = GetString();

 printf("hello, %s\n", s);

}

• And now we run this, with -o hello to output a program named hello rather than

the default a.out .

jharvard@appliance (~): clang -o hello hello.c -lcs50

• Since we don’t want to remember these, and other arguments, to clang we simply use

make hello .

• Recall that printf is in the library stdio.h . There’s \n , \r , \' , \" , \\ , \0 ,

and other escape sequences that are special expressions that start with a backslash.

For example \" is useful in printing the double quotes without causing an error by

ending the string passed to printf .

Week 1, continued

6

• We also have placeholders like %c for printing a single character, %d for printing a

decimal number, also written as %i , and %s for strings.

• In C, we also have different types of variables that can store different types of things.

char stores a character, float is for a real number, int is for an integer, and a

long long is for a really long number, more than an int can hold.

• In CS50.h we have two other data types, string , and bool , which can either

be true or false. The library also contains GetChar , GetInt , GetString , etc, for

getting a specific type of input from a user.

Conditions

• Conditions have the following structure:

if (condition)

{

 // do this

}

• The // in line 3 marks a comment, a note to yourself that has no impact on the

program.

• There can also be two exclusive forks:

if (condition)

{

 // do this

}

else

{

 // do that

}

• Or three:

Week 1, continued

7

if (condition)

{

 // do this

}

else if (condition)

{

 // do that

}

else

{

 // do this other thing

}

• Incidentally, there are many other ways to write the same code, one being as follows:

if (condition) {

 // do this

} else if (condition) {

 // do that

} else {

 // do this other thing

}

• We prefer that braces are on their own lines, among other things, and will guide you

along the way to a standard CS50 style that note these distinctions of new lines and

tabs, for consistency and readability.

Boolean Expressions

• Boolean expressions can be combined with && as "and", and || as "or":

if (condition && condition)

{

 // do this

}

if (condition || condition)

{

 // do this

}

Week 1, continued

8

Switches

• Switches are an alternate way of expressing if and else if :

switch (expression)

{

 case i:

 // do this

 break;

 case j:

 // do that

 break;

 default:

 // do this other thing

 break;

}

Loops

• Loops have various formats which we will return to:

for (initializations; condition; updates)

{

 // do this again and again

}

while (condition)

{

 // do this again and again

}

do

{

 // do this again and again

}

while (condition);

Week 1, continued

9

Variables

• Variables in C have a particular type. Here, the first line creates a new variable of the

type int , and the second assigns a value of 0 to it.

int counter;

counter = 0;

• A more elegant way to write the above code:

int counter = 0;

Functions and Arguments

• Functions take arguments within parentheses:

string name = GetString();

printf("hello, %s\n", name);

• As an aside, jailbreaking an iPhone or generally any phone, is doing something the

company didn’t intend, such as installing applications from outside the App Store. This

program, iUnlock.c6, was written in C, and at the end of the day even advanced,

familiar devices use the same code that we do in hello.c .

• Let’s make another program, adder.c .

6 http://cdn.cs50.net/2014/fall/lectures/1/w/src1w/iUnlock.c

http://cdn.cs50.net/2014/fall/lectures/1/w/src1w/iUnlock.c
http://cdn.cs50.net/2014/fall/lectures/1/w/src1w/iUnlock.c

Week 1, continued

10

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 // ask user for input

 printf("Give me an integer: ");

 int x = GetInt();

 printf("Give me another integer: ");

 int y = GetInt();

 // do the math

 printf("The sum of %i and %i is %i!\n", x, y, x + y);

}

• The last argument to printf in line 13, x + y , is simply what we want, the sum.

Let’s compile and run it:

jharvard@appliance (~): make adder

clang -ggdb3 -O0 -std=c99 -Wall -Werror adder.c -lcs50 -lm -o adder

jharvard@appliance (~): ./adder

Give me an integer: 1

Giver me another integer: 2

The sum of 1 and 2 is 3!

jharvard@appliance (~):

• We can be even fancier with conditions-0.c :

Week 1, continued

11

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 printf("I'd like an integer please: ");

 int n = GetInt();

 if (n > 0)

 {

 printf("You picked a positive number!\n");

 }

 else

 {

 printf("You picked a negative number!\n");

 }

}

• This will print whether the number is positive or negative. Let’s try to compile:

jharvard@appliance (~): make conditions-0

make: Nothing to be done for 'conditions-0'.

• So the mistake here was saving the file as conditions-0 rather than

conditions-0.c . Now we compile and run, but when we type in 0:

jharvard@appliance (~): ./conditions-0

I'd like an integer please: 0

You picked a negative number!

jharvard@appliance (~):

• So let’s add a third condition:

Week 1, continued

12

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 printf("I'd like an integer please: ");

 int n = GetInt();

 if (n > 0)

 {

 printf("You picked a positive number!\n");

 }

 else if (n < 0)

 {

 printf("You picked a negative number!\n");

 }

 else

 {

 printf("You picked zero!\n");

 }

}

jharvard@appliance (~): ./conditions-0

I'd like an integer please: 0

You picked zero!

jharvard@appliance (~):

• We conclude with Saroo Brierley: Homeward Bound7 from Google, the story of a man

who finds his home with the help Google Earth, testifying to the power of technology.

7 http://www.youtube.com/watch?v=UXEvZ8B04bE

http://www.youtube.com/watch?v=UXEvZ8B04bE
http://www.youtube.com/watch?v=UXEvZ8B04bE

	Week 1, continued
	Table of Contents
	Formula SAE at MIT
	Introduction
	C
	Functions and Syntax
	Compilers, Commands, and Libraries
	Conditions
	Boolean Expressions
	Switches
	Loops
	Variables
	Functions and Arguments

