
1

Week 2

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Bugs ... 1

Administrative Details ... 4

Functions .. 5

Data Representation .. 9

Bugs

• A bug is a mistake in a program. Let’s look at buggy-0.c 1:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i <= 10; i++)

 printf("*");

}

The bug here is called an off-by-one error since the start value for i is 0 and we

continue while i <= 10 , resulting in 11 things counted total.

• So we can change the code like this:

#include <stdio.h>

int main(void)

{

 for (int i = 1; i <= 10; i++)

 printf("*");

}

1 http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/buggy-0.c

http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/buggy-0.c
http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/buggy-0.c

Week 2

2

• This is more straightforward for humans, but computer scientists generally start

counting at 0, so we prefer this version:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 10; i++)

 printf("*");

}

• In buggy-1.c 2 we want to print one asterisk per line:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i <= 10; i++)

 printf("*");

 printf("\n");

}

But this program prints all the stars on the same line:

jharvard@appliance (~/Dropbox/src2m): ./buggy-1

So even though we indented line 7 and 8, we need curly braces to signify that those

are part of the same block. If we only have one line in the body of the loop, however,

then the braces would be optional. (But we prefer you always use curly braces,

especially if you’re new to programming!)

2 http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/buggy-1.c

http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/buggy-1.c
http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/buggy-1.c

Week 2

3

#include <stdio.h>

int main(void)

{

 for (int i = 0; i <= 10; i++)

 {

 printf("*");

 printf("\n");

 }

}

• In the real world, bugs can have serious effects. In February, Apple’s OS X and iOS

operating systems had a bug in its SSL, Secure Sockets Layer, software. SSL is

involved with visiting websites that begin with https and use encryption, and Apple’s

implementation of SSL originally looked like this:

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

• Note that line 9 is accidentally repeated, and the lack of curly braces means that the

code actually looks like this:

Week 2

4

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

So this means that line 9 is executed no matter what, and the last check for SSL

will never be done.

• If you have an older version of Mac OS, gotofail.com3 will test whether you’re

vulnerable.

Administrative Details

• Sections4 start Sunday 9/21, and resectioning will be accomodated in the days to

come.

• Office hours5 may vary between weeks, so be sure to check the schedule.

• Assessment of problem sets will be along the axes of scope (how much of the problem

set did you attempt?), correctness (does it work, and without bugs?), design (is your

code written well?), and style (is easy for another human to read, with appropriate

indentation and variable names?).

We score these each on a 5 point scale, with 3 being good.

We weigh things according to the following formula:

scope x (correctness x 3 + design x 2 + style x 1)

• Academic honesty: CS50 has the most Ad Board cases because the work is

electronic, and as computer scientists we can look for and find cases more easily.

3 http://gotofail.com
4 http://cs50.harvard.edu/sections
5 http://cs50.harvard.edu/hours

http://gotofail.com
http://cs50.harvard.edu/sections
http://cs50.harvard.edu/hours
http://gotofail.com
http://cs50.harvard.edu/sections
http://cs50.harvard.edu/hours

Week 2

5

The syllabus6 gives the bottom line as "be reasonable" and has further guidelines,

but remember that "the essence of all work that you submit to this course must be

your own."

"… you may show your code to others, but you may not view theirs, so long as you

and they respect this policy’s other constraints" allows students to help each other

at office hours and beyond, but remember that other aspects of the policy also need

to be followed.

For context and transparency, about 20 students were involved last fall, and a

range of 0 - 5% of students in the course in the past years.

We compare current submissions to past submissions, code repos, discussion

forums, etc.

• We have a regret clause in the syllabus7 also:

"If you commit some act that is not reasonable but bring it to the attention of the

course’s heads within 72 hours, the course may impose local sanctions that may

include an unsatisfactory or failing grade for work submitted, but the course will not

refer the matter to the Administrative Board."

We hope to turn moments of bad decisions into teaching opportunities, rather than

drastic consequences.

• Let’s break the tension with Tiny Hamsters Eating Tiny Burritos - Episode 18.

Functions

• We can write our own functions. Let’s open function-0.c 9:

6 http://cs50.harvard.edu/syllabus#academic_honesty
7 http://cs50.harvard.edu/syllabus#academic_honesty
8 http://youtu.be/JOCtdw9FG-s
9 http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/function-0.c

http://cs50.harvard.edu/syllabus#academic_honesty
http://cs50.harvard.edu/syllabus#academic_honesty
http://youtu.be/JOCtdw9FG-s
http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/function-0.c
http://cs50.harvard.edu/syllabus#academic_honesty
http://cs50.harvard.edu/syllabus#academic_honesty
http://youtu.be/JOCtdw9FG-s
http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/function-0.c

Week 2

6

#include <cs50.h>

#include <stdio.h>

// prototype

void PrintName(string name);

int main(void)

{

 printf("Your name: ");

 string s = GetString();

 PrintName(s);

}

/**

 * Says hello to someone by name.

 */

void PrintName(string name)

{

 printf("hello, %s\n", name);

}

We first see the main function in lines 7-12. A good way to start reading someone

else’s program is to start with the main function and follow its logic.

This program asks for your name, and then we see PrintName in line 11.

PrintName isn’t in stdio or another library, but in the same file in lines 17-20.

Lines 14-16 is the description of the function as a comment, and lines 17-20,

PrintName , is a simple function that takes one argument in the parentheses,

string name . That just means this function as something that takes in a string

called name .

• The use of a function like this is called abstraction, in this case calling it PrintName

that describes what it does. void in line 17 just means it doesn’t return any value.

Instead, PrintName has a side effect of printing to the screen.

• Here’s another example, return.c 10:

10 http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/return.c

http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/return.c
http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/return.c

Week 2

7

#include <stdio.h>

// function prototype

int cube(int a);

int main(void)

{

 int x = 2;

 printf("x is now %i\n", x);

 printf("Cubing...\n");

 x = cube(x);

 printf("Cubed!\n");

 printf("x is now %i\n", x);

}

/**

 * Cubes argument.

 */

int cube(int n)

{

 return n * n * n;

}

In line 8 we make a variable x , give it the value 2 , say what it is in line 9, and

call the function cube in line 11, saving the result in the same variable x . We

overwrite the value of x with whatever cube returns.

In line 19, we give the cube function int n as an argument, meaning it takes

in an integer. The beginning is also now int rather than void , which means it

returns an integer instead of nothing.

• Now let’s look at function-1.c 11:

11 http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/function-1.c

http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/function-1.c
http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/function-1.c

Week 2

8

#include <cs50.h>

#include <stdio.h>

// prototype

int GetPositiveInt(void);

int main(void)

{

 int n = GetPositiveInt();

 printf("Thanks for the %i!\n", n);

}

/**

 * Gets a positive integer from a user.

 */

int GetPositiveInt(void)

{

 int n;

 do

 {

 printf("Please give me a positive int: ");

 n = GetInt();

 }

 while (n < 1);

 return n;

}

In this example, we write the GetPositiveInt function, using a do-while loop to

keep getting an integer from the user until n is a positive number.

Notice that n is declared on line 18 rather than 22, so it will be accessible within

the entire function. A simple rule of thumb is that a variable can only be used within

the most recent curly braces it’s declared in, so we won’t be able to use n outside

of the do-while loop if it’s declared inside. n has a scope, or usability, limited to the

area it is declared in, whether it’s an entire function or a loop.

Also, note that the top we have a prototype on line 5, which is declaring that the

GetPositiveInt exists somewhere. Otherwise, main would not be able to refer

to the function in line 9. This is because the compiler goes top to bottom, and the

GetPositiveInt function didn’t exist by the time it is called, so it would cause

Week 2

9

an error, unless we declare it with a prototype as in line 5. #include is done at

the top of the file for the exact same reason, so those functions are declared before

they are called.

A clever solution would be moving the function above main :

#include <cs50.h>

#include <stdio.h>

/**

 * Gets a positive integer from a user.

 */

int GetPositiveInt(void)

{

 int n;

 do

 {

 printf("Please give me a positive int: ");

 n = GetInt();

 }

 while (n < 1);

 return n;

}

int main(void)

{

 int n = GetPositiveInt();

 printf("Thanks for the %i!\n", n);

}

• But stylistically, longer programs will benefit from having main at the top for

convenience and readability.

• We can declare a variable globally by putting it at the top of the file, outside all curly

braces, but we frown upon that for now.

Data Representation

• Another way to look at implementation is how we represent information.

Recall that we have various types like char , which is 1 byte, or 8 bits in size. (8

bits would represent 256 unique patterns, counting from 0 and ending at 255.) Since

Week 2

10

other languages have more characters, other standards have been adopted, but for

English in C we default to the char type.

An int is 4 bytes, with about 4 billion possible values, including negative numbers.

A float is also 4 bytes, but has a decimal point somewhere to represent floating-

point values, as well as a limited amount of precision.

We can slightly avoid that problem with a double with 8 bytes of memory for a

larger, but still finite, number of floating-point values.

A long long is also 8 bytes, but stores integer values.

Fun fact, a long in C is 4 bytes, the same as an int , for historical reasons.

• Integer overflow is a problem with limited sizes of variables. If we had one byte to

store an integer that looked like this:

 128 64 32 16 8 4 2 1

 1 1 1 1 1 1 1 1

• This number represents 255, but if we added 1 to this number, the value would carry

over to become 0:

 128 64 32 16 8 4 2 1

 0 0 0 0 0 0 0 0

• There is no bit to hold the final, left-most 1 , so with one byte, counting up from 255

will result in 0.

• We also have floating-point imprecision. Let’s look at floats-0.c 12:

#include <stdio.h>

int main(void)

{

 float f = 1 / 10;

 printf("%.1f\n", f);

}
12 http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/floats-0.c

http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/floats-0.c
http://cdn.cs50.net/2014/fall/lectures/2/m/src2m/floats-0.c

Week 2

11

The program should print out .1 , but instead:

jharvard@appliance (~/Dropbox/src2m): ./floats-0

0.0

jharvard@appliance (~/Dropbox/src2m):

This is because the value of 1 and 10 in line 5 is assumed to be of an integer,

and the decimal value we expect is truncated, or thrown away. We still see 0.0 ,

but only because %.1f , for one decimal point, is specified in line 6 to printf .

• If we fix the code to:

#include <stdio.h>

int main(void)

{

 float f = 1.0 / 10.0;

 printf("%.1f\n", f);

}

• We get:

jharvard@appliance (~/Dropbox/src2m): ./floats-0

0.1

jharvard@appliance (~/Dropbox/src2m):

• Let’s see what happens when we print 28 decimal places:

#include <stdio.h>

int main(void)

{

 float f = 1.0 / 10.0;

 printf("%.28f\n", f);

}

• We expect something like 0.100000000000… but we get:

jharvard@appliance (~/Dropbox/src2m): ./floats-0

0.1000000014901161193847656250

jharvard@appliance (~/Dropbox/src2m):

Week 2

12

• Since the computer can’t represent an infinite number of real numbers, it gives us the

closest number it can represent, which in this case is the number above.

• Though this seems insignificant, in software where we add and multiply and use

numbers over and over again, these tiny mistakes add up.

• A clip from Modern Marvels13 demonstrates a tragic mistake with floating-point

imprecision, causing a missile to crash unintentionally.

• Colton Ogden plays another song14 for Week 2.

13 http://youtu.be/rOZrNQIFpAA?t=42m6s
14 http://www.youtube.com/watch?v=mRVn_80SI5k

http://youtu.be/rOZrNQIFpAA?t=42m6s
http://www.youtube.com/watch?v=mRVn_80SI5k
http://youtu.be/rOZrNQIFpAA?t=42m6s
http://www.youtube.com/watch?v=mRVn_80SI5k

	Week 2
	Table of Contents
	Bugs
	Administrative Details
	Functions
	Data Representation

