
1

Week 5

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Notes .. 1

Pointer Review ... 1

Swap Again .. 5

Malloc ... 10

Binky ... 15

Valgrind .. 19

Notes

• What you’re reading now is a set of notes for reference and review of material. We

want you more engaged in lecture than just taking notes! Find the complete collection

at http://cs50.harvard.edu/lectures.

Pointer Review

• Remember that last time we discovered that a string was actually char* , which

meant that every time we stored the return value of GetString , we were actually just

storing an address to a character in memory:

string s = GetString();

 ----- -------------------------

 |0x1| | D | a | v | e | n |\0 |

 ----- -------------------------

 0x1 0x2 0x3 0x4 0x5 0x6

GetString gets a chunk of memory from the operating system by calling

malloc , putting letters from the user into that memory (followed by a \0

character), and then returning a variable we call a pointer that is the address of

where the first character (since it’s a char*) is in memory.

http://cs50.harvard.edu/lectures

Week 5

2

And remember that we can move left to right through the string in linear time,

until we reach \0 , which will tell us we are at the end of the string .

• Last time we also looked at this code, which didn’t actually compare the two string s:

string s = GetString();

string t = GetString();

if (s == t)

{

 printf("You typed the same thing!\n");

}

else

{

 printf("You typed different things!\n");

}

This program starts by asking the user for two string s, and then uses s == t

to try to compare them, but fails to do so correctly.

• A volunteer from the audience, Janelle, helps us by first drawing a picture of what’s

happening:

s 0 1 2

------- -------------------------------

| 0x1 | | g | a | b | e | \0 |

------- -------------------------------

 0x1 0x2 0x3 ...

t

------- -------------------------------

|0x10 | | g | a | b | e | \0 |

------- -------------------------------

 0x10 0x11 0x12 ...

The boxes on the right are the strings s from GetString stored in memory,

with their addresses below (the 0, 1, 2 at the top of the first string is just the

index of each box, were you to treat the memory as an array).

The boxes on the left are the values of s and t , so when we try to compare

them we see that they are different values, though what we really wanted to was

to compare the two string s.

Week 5

3

• Let’s look at a fix:

char* s = GetString();

char* t = GetString();

if (s != NULL && t != NULL)

{

 if (strcmp(s, t) == 0)

 {

 printf("You typed the same thing!\n");

 }

 else

 {

 printf("You typed different things!\n");

 }

}

First, we checked that both s and t are actually addresses and not NULL (like

if the string a user typed is too long).

And if we were to try to do something with NULL , like passing it in to a function,

most of the time the function or program will crash, so we should error-check.

This is a good habit to get into, any time we use a variable that could be NULL .

Then we use strcmp that stands for "string comparison" that compares the

string s rather than the addresses, by going down both of them one character

at at time.

We made up all of these addresses and we just learned that the addresses are

stored in s and t , so we can simplify this diagram by using just arrows. If s is a

pointer, we can make it an arrow that literally points to what it refers to. The actual

addresses don’t really matter, so we can cross them out, and just know that some

address is there:

s

------- -------------------------------

| 0x1 | -----> | g | a | b | e | \0 |

------- -------------------------------

 0x1 0x2 0x3 ...

t

------- -------------------------------

|0x10 | -----> | g | a | b | e | \0 |

Week 5

4

------- -------------------------------

 0x10 0x11 0x12 ...

• We also looked at this last time:

string s = GetString();

...

string t = s;

if (strlen(t) > 0)

{

 t[0] = toupper(t[0]);

}

We wanted to capitalize just the first letter in a string t , but we ended up

changing s as well.

As an aside, a computer that has a 32-bit architecture uses 32-bits to address

memory, which is why older computers can only have a maximum of 4GB of

RAM. They can only "count" as high as about 4 billion bytes, since they’re using

32 bits, or 4 bytes, as addresses.

• So when we said string t = s , we were really doing this:

s

---- -------------------------------

| | -----> | g | a | b | e | \0 |

---- -------------------------------

 ^

t |

---- |

| | ------/

• So now if we change t[0] , we’re also changing s[0] . And remember that even

though t and s are pointers, we can still use the array notation of [0] or [1] or

[2] to jump to any element in the array.

• Let’s fix our code:

Week 5

5

char* s = GetString();

...

char* t = malloc((strlen(s) + 1) * sizeof(char));

...

for (int i = 0, n = strlen(s); i <= n; i++)

{

 t[i] = s[i];

}

...

if (strlen(t) > 0)

{

 t[0] = toupper(t[0]);

}

At (1), we are allocating a certain amount of memory — as many bytes as there

are characters in s , with one more for the terminating character, and just in case

sizeof(char) isn’t 1 , we multiply it by whatever that value is, even though it

should most likely be 1 .

Then we copy s to t , and now that last line only changes t .

And remember that when we first allocate memory for t , there are garbage values

inside that we need to overwrite:

s

---- -------------------------------

| | -----> | g | a | b | e | \0 |

---- -------------------------------

t

---- -------------------------------

| | -----> | ? | ? | ? | ? | ? |

---- -------------------------------

Swap Again

• Finally, recall the swap example:

Week 5

6

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

This function worked in swapping a and b , but it didn’t work in being able to swap

the original variables in main , which looks like this:

...

int main(void)

{

 int x = 1;

 int y = 2;

 printf("x is %i\n", x);

 printf("y is %i\n", y);

 printf("Swapping...\n");

 swap(x, y);

 printf("Swapped!\n");

 printf("x is %i\n", x);

 printf("y is %i\n", y);

}

...

• So let’s look at swap.c 1:

1 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/swap.c

http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/swap.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/swap.c

Week 5

7

#include <stdio.h>

// function prototype

void swap(int* a, int* b);

int main(void)

{

 int x = 1;

 int y = 2;

 printf("x is %i\n", x);

 printf("y is %i\n", y);

 printf("Swapping...\n");

 swap(&x, &y);

 printf("Swapped!\n");

 printf("x is %i\n", x);

 printf("y is %i\n", y);

}

/**

 * Swap arguments' values.

 */

void swap(int* a, int* b)

{

 int tmp = *a;

 *a = *b;

 *b = tmp;

}

Notice that we have brand new syntax on line 14, the & s. It’s one of the last pieces

of syntax we have to learn (phew) and all it does is get the address of some variable.

&x is the address of x , which is an int .

• Before, x and y were passed as copies, but now we can pass swap a "treasure map"

that leads to x and y that changes the same variables in memory that main has.

• And if we look at the swap function, we see that a and b are no longer int s but

int* s.

• Now when we call swap and give it two addresses, actual locations in memory, what

does it do with them? At line 25, it goes to the location with the address stored in a

Week 5

8

with *a , and stores that int value in tmp . At line 26, it goes to the location with the

address stored in b and stores that in the location with the address stored in a . Finally,

at line 27, we put the value of tmp into the location with the address stored in b .

• When main calls swap , swap 's stack frame receives the address of x and y ,

whereever they may be in memory.

• And now we see that our values are swapped successfully:

jharvard@appliance (~/Dropbox/src5m): ./swap

x is 1

y is 2

Swapping...

Swapped!

x is 2

y is 1

• We can even see this with our friend gdb :

jharvard@appliance (~/Dropbox/src5m): gdb ./swap

Reading symbols from ./swap...done.

(gdb) break main

Breakpoint 1 at 0x80484ac: file swap.c, line 19.

(gdb) run

Starting program: /home/jharvard/Dropbox/src5m/swap

Breakpoint 1, main () at swap.c:19

19 int x = 1;

(gdb) print x

$1 = 0

• Remember that in this case x could be any garbage value (though we happened to

get 0), since line 19 hasn’t yet run.

• We confirm that x and y are indeed 1 and 2 :

(gdb) next

20 int y = 2;

(gdb) print x

$2 = 1

(gdb) next

22 printf("x is %i\n", x);

(gdb) print y

Week 5

9

$3 = 2

(gdb) next

x is 1

23 printf("y is %i\n", y);

(gdb) next

y is 2

24 printf("Swapping...\n");

(gdb) print x

$4 = 1

(gdb) print y

$5 = 2

• But what if we said this? Notice that we’re getting large hexadecimal values, 0xbfff…

, which are the actual memory addresses of x and y in memory:

(gdb) print &x

$6 = (int *) 0xbffff0c4

(gdb) print &y

$7 = (int *) 0xbffff0c0

Notice that the difference between the two is 4, the size of an int , so they must

be lined up in memory.

• Stepping into the swap function, we see that a and b are indeeed those same

addresses, which, when followed, lead to 1 and 2 , or x and y from main , as

expected:

(gdb) next

Swapping...

25 swap(&x, &y);

(gdb) step

swap (a=0xbffff0f4, b=0xbffff0f0) at swap.c:36

36 int tmp = *a;

(gdb) print a

$8 = (int *) 0xbffff0c4

(gdb) print b

$9 = (int *) 0xbffff0c0

(gdb) print *a

$10 = 1

(gdb) print *b

$11 = 2

Week 5

10

• You’ll see more in problem sets how these are useful and get more comfortable with

them!

Malloc

• All this time, when we’ve been using the CS50 Library to GetString , it’s also been

calling malloc . But let’s start by looking at scanf-0.c 2:

#include <stdio.h>

int main(void)

{

 int x;

 printf("Number please: ");

 scanf("%i", &x);

 printf("Thanks for the %i!\n", x);

}

It declares a variable x and printf s a message asking for a number, but what

about line 7? scanf "scans" the user’s input in from the keyboard, and %i means

we expect an integer. Then we pass in &x , because we want the input to be saved

at that location. Otherwise, only a copy of x would be changed by scanf .

• So we can run it:

jharvard@appliance (~/Dropbox/src5m): ./scanf-0

Number please: 50

Thanks for the 50!

jharvard@appliance (~/Dropbox/src5m): ./scanf-0

Number please: -1

Thanks for the -1!

jharvard@appliance (~/Dropbox/src5m): ./scanf-0

Number please: 1.5

Thanks for the 1!

Hm, seems to work until we pass in 1.5 . Well, it expects an int , so it only keeps

the integer part of the number.

2 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-0.c

http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-0.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-0.c

Week 5

11

• Let’s look at scanf-1.c 3:

#include <stdio.h>

int main(void)

{

 char* buffer;

 printf("String please: ");

 scanf("%s", buffer);

 printf("Thanks for the %s!\n", buffer);

}

But we realize this is a bad example. We create a char* buffer and expect

scanf to take some string and put it in memory at whatever address buffer

points to. But buffer is some garbage value, so scanf will put the input at an

address that could be anywhere in memory. And if the memory doesn’t belong to

us, then we’ll probably cause a segmentation fault and crash our program.

• What if we did something like scanf-2.c 4?

#include <stdio.h>

int main(void)

{

 char buffer[16];

 printf("String please: ");

 scanf("%s", buffer);

 printf("Thanks for the %s!\n", buffer);

}

This is better, since we’re declaring an array of characters, which sets aside

memory, and works perfectly, until we type in 16, 17, or more characters. Then that

string will partly end up in buffer , but overwrite whatever is beyond the boundary

of that array, since we only asked for 16 bytes.

• If we in cs50.h 5, we see this:

3 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-1.c
4 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-2.c
5 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.h

http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-1.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-2.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.h
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-1.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/scanf-2.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.h

Week 5

12

...

/**

 * Our own data type for string variables.

 */

typedef char* string;

...

And that just makes string mean the same as char* .

• If we continue, we see code like this:

Week 5

13

...

/**

 * Reads a line of text from standard input and returns the equivalent

 * char; if text does not represent a char, user is prompted to retry.

 * Leading and trailing whitespace is ignored. If line can't be read,

 * returns CHAR_MAX.

 */

char GetChar(void);

/**

 * Reads a line of text from standard input and returns the equivalent

 * double as precisely as possible; if text does not represent a

 * double, user is prompted to retry. Leading and trailing whitespace

 * is ignored. For simplicity, overflow and underflow are not detected.

 * If line can't be read, returns DBL_MAX.

 */

double GetDouble(void);

/**

 * Reads a line of text from standard input and returns the equivalent

 * float as precisely as possible; if text does not represent a float,

 * user is prompted to retry. Leading and trailing whitespace is ignored.

 * For simplicity, overflow and underflow are not detected. If line can't

 * be read, returns FLT_MAX.

 */

float GetFloat(void);

/**

 * Reads a line of text from standard input and returns it as an

 * int in the range of [-2^31 + 1, 2^31 - 2], if possible; if text

 * does not represent such an int, user is prompted to retry. Leading

 * and trailing whitespace is ignored. For simplicity, overflow is not

 * detected. If line can't be read, returns INT_MAX.

 */

int GetInt(void);

but no actual functions. Remember that we’re in the header file, which only has a

typedef and prototypes.

Week 5

14

• So we need to find the actual implementation of functions in cs50.c6, in particular

GetInt :

...

/**

 * Reads a line of text from standard input and returns it as an

 * int in the range of [-2^31 + 1, 2^31 - 2], if possible; if text

 * does not represent such an int, user is prompted to retry. Leading

 * and trailing whitespace is ignored. For simplicity, overflow is not

 * detected. If line can't be read, returns INT_MAX.

 */

int GetInt(void)

{

 // try to get an int from user

 while (true)

 {

 // get line of text, returning INT_MAX on failure

 string line = GetString();

 if (line == NULL)

 {

 return INT_MAX;

 }

 // return an int if only an int (possibly with

 // leading and/or trailing whitespace) was provided

 int n; char c;

 if (sscanf(line, " %i %c", &n, &c) == 1)

 {

 free(line);

 return n;

 }

 else

 {

 free(line);

 printf("Retry: ");

 }

 }

}

...

6 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.c

http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.c

Week 5

15

First it tells us what the range of values GetInt can return, and that If line

can’t be read, returns INT_MAX . So if something went wrong, it wouldn’t

return NULL but a special value called INT_MAX . We can’t return NULL since

it’s technically pointer and we have to return an int , so we return INT_MAX , the

maximum value that can be stored in an int , as an error code. (We haven’t been

checking to make things simple, though for maximum safety we should!)

Then we see an infinite loop with while (true) , that actually starts by calling

GetString , checking that it’s not NULL .

Then we call sscanf , which takes a string in memory and does any of a

number of things with it. In this case, we take line , our string from the user, and

looks for " %i %c" , which means an int, and maybe other characters. sscanf

returns the number of variables it was able to find, so in this case we want that to

be 1 , or just an int , rather than an int followed by other characters. If the user

typed in 123 x , then sscanf would return 2 .

Realize that we do a lot of error-checking, so any possible input typed in will have a

case in our code that will handle it (and makes sure that cs50.h isn’t the source

of a bug in your program!).

Binky

• Let’s return to our friend from last time, Binky. Remember we had code that looked

like this:

Week 5

16

int main(void)

{

 int* x;

 int* y;

 x = malloc(sizeof(int));

 *x = 42;

 *y = 13;

 y = x;

 *y = 13;

}

This code does nothing useful, but walking through it and seeing what’s going on

helps us understand pointers.

• Let’s retell the story super quickly.

The first two lines declare two pointers to integers, int* x and int* y , with

some garbage values in them:

x -----

 | ? |

y -----

 | ? |

Then we allocate enough memory to store an int , and stores the address of that

memory in x with x = malloc(sizeof(int)); .

With *x = 42 , we go to the address x and stores 42 there.

x ----- ------

 | --|------> | 42 |

 ----- ------

y -----

Week 5

17

 | ? |

But then we tried to go to y with *y = 13 , but since there’s still a garbage value

in y , Binky lost his head.

We could fix it with this line, y = x :

x ----- ------

 | --|------> | 42 |

 ----- ------

 ^

y ----- |

 | --|--------/

And now we can say *y = 13 :

x ----- ------

 | --|------> | 13 |

 ----- ------

 ^

y ----- |

 | --|--------/

• Let’s open memory.c 7 as another example:

7 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/memory.c

http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/memory.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/memory.c

Week 5

18

#include <stdlib.h>

void f(void)

{

 int* x = malloc(10 * sizeof(int));

 x[10] = 0;

}

int main(void)

{

 f();

 return 0;

}

All main does is call a function f and return 0 . So let’s look at f , which only

has two lines. The left side of the first line is just declaring a pointer to an int , and

the right is allocating 40 bytes (4 bytes per int , at least on the appliance). And

remember that malloc gives you one contiguous chunk of memory of that size.

The second line, x[10] = 0 , is setting the 11th element of the array to 0 , but

that element doesn’t exist since there are only 10 elements, indexed 0 through 9 .

There may be a garbage value in x[10] , but that memory doesn’t belong to us,

and might cause problems or crash our program.

• We can run the program with some values like x[10] or even x[1000] without any

problems, if we get lucky, though we may have overwritten some other variable in our

program’s memory.

• If we went really far out, like trying to do this:

...

 int* x = malloc(10 * sizeof(int));

 x[100000] = 0;

...

then we get a Segmentation fault (core dumped) since we really shouldn’t

be touching that piece of memory.

Week 5

19

Valgrind

• Let’s introduce you to everyone’s best friend, valgrind . This is a tool that helps us

notice these cases where we touch memory that doesn’t belong to us, and also where

we have memory leaks. So far, when we’ve asked the operating system for memory

with malloc , we haven’t returned it (which we will soon with free) when we finished,

and so those chunks of memory are "leaked."

If you’ve left your computer running for some time, opening lots of programs, and it

gets slower, then the problem could be with certain programs asking for memory,

and forgetting about it, taking it away from other programs and slowing everything

else.

• Let’s run valgrind ./memory :

jharvard@appliance (~/Dropbox/src5m): valgrind ./memory

==22478== Memcheck, a memory error detector

==22478== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==22478== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for

 copyright info

==22478== Command: ./memory

==22478==

==22478== Invalid write of size 4

==22478== at 0x80484C0: f (memory.c:21)

==22478== by 0x80484E1: main (memory.c:26)

==22478== Address 0x429eaa8 is not stack'd, malloc'd or (recently) free'd

==22478==

==22478==

==22478== HEAP SUMMARY:

==22478== in use at exit: 40 bytes in 1 blocks

==22478== total heap usage: 1 allocs, 0 frees, 40 bytes allocated

==22478==

==22478== LEAK SUMMARY:

==22478== definitely lost: 40 bytes in 1 blocks

==22478== indirectly lost: 0 bytes in 0 blocks

==22478== possibly lost: 0 bytes in 0 blocks

==22478== still reachable: 0 bytes in 0 blocks

==22478== suppressed: 0 bytes in 0 blocks

==22478== Rerun with --leak-check=full to see details of leaked memory

==22478==

==22478== For counts of detected and suppressed errors, rerun with: -v

Week 5

20

==22478== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

We see that it tells us about the Invalid write of size 4 where we tried

to write to x[100000] , and also the 40 bytes in 1 blocks that we haven’t

returned, or free d.

• A final example demonstrates buffer overflow, which bad guys can take advantage

of to compromise accounts or machines. Like the name suggests, a buffer overflow is

filling a buffer, or a chunk of memory, with too much information. (When watching videos

on YouTube or the like, "buffer" is used similarly where the video player is downloading

lots of bytes from the Internet and holding it in a buffer, so it can play the video without

pausing and downloading again constantly.)

Very bad things can happen. Let’s look at this example:

#include <string.h>

void f(char* bar)

{

 char c[12];

 strncpy(c, bar, strlen(bar));

}

int main(int argc, char* argv[])

{

 f(argv[1]);

}

main takes an argument, passing it to f , which has a char array called c

of size 12 , and uses this new function called strncpy . With this simple line of

code, we’ve made our entire computer vulnerable, since someone can run it with

certain arguments that represent executable code, that can do things like delete

files, get a command-line prompt for more access to your computer, and more.

• We’ll learn more about these concepts, and this diagram, next time:

| |

| text |

| |

Week 5

21

| initialized data |

| uninitialized data |

| heap |

| | |

| | |

| v |

| |

| |

| |

| ^ |

| | |

| | |

| stack |

| environment variables |

• We end on this xkcd8 until next time.

8 http://xkcd.com/138

http://xkcd.com/138
http://xkcd.com/138

	Week 5
	Table of Contents
	Notes
	Pointer Review
	Swap Again
	Malloc
	Binky
	Valgrind

