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News

• Good news everyone! CS50 Lunch is again this Friday, RSVP at the usual http://

cs50.harvard.edu/rsvp.

• Even better news, no lecture on Monday, 10/13, for Columbus Day!

• Less better news, Quiz 01 is Wednesday, 10/15, more details to come.

• Slightly better news, review session on Monday 10/13, and sections will meet as usual.

• Best news, there will be lecture on Friday 10/17, with constant time data structures,

trees, tries, hash tables, and all sorts of fun stuff.

Buffer Overflow

• Remember that we’ve been looking into a computer’s memory, or where a program

lives when it’s running. When you click on a program to open it, it’s copied from the

hard drive (or SSD nowadays) to RAM, random-access memory, where it lives until the

program quits, the power goes out, or you shut down your laptop.

• That memory is laid out like this, for each program:

1  http://cs50.harvard.edu/quizzes/0

http://cs50.harvard.edu/rsvp
http://cs50.harvard.edu/rsvp
http://cs50.harvard.edu/quizzes/0
http://cs50.harvard.edu/quizzes/0
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-----------------------------

|                           |

|           text            |

|                           |

-----------------------------

|      initialized data     |

-----------------------------

|     uninitialized data    |

-----------------------------

|           heap            |

|             |             |

|             |             |

|             v             |

|                           |

|                           |

|                           |

|             ^             |

|             |             |

|             |             |

|           stack           |

-----------------------------

|   environment variables   |

-----------------------------

# This is a conceptual model where we have the stack at the bottom and other things

at the top.

# The thing at the very top, the text segment, is the actual ones and zeroes that make

up your compiled program. When you run ./mario , those bits are copied to the

RAM in the text segment.

# Below that, initialized and uninitialized data are things like global variables, that

we’ve not used many of, or statically defined strings, that are hardcoded into your

program.

# Then we have the stack, where we’ve used it for functions by copying over variables,

that are passed in as arguments, to the stack. Local variables within each function

are also stored in the stack.

# Finally, the environment variables, which we’ve seen when we did something like

x[1000]  when we shouldn’t have, are the global settings for the program.
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• Today, we’ll focus on the heap, another chunk of memory (and all of these bytes are

stored on the same hardware, only we designate them for different purposes), where

other variables and allocated memory from the operating system are stored. You can

see that there’s a problem if the heap and the stack collide if your program starts to

use too much memory, and bad things will happen.

• Last time we looked at:

#include <string.h>

void f(char* bar)

{

    char c[12];

    strncpy(c, bar, strlen(bar));

}

int main(int argc, char* argv[])

{

    f(argv[1]);

}

# It has no functional purpose, other than to demonstrate how a poorly written program

might lead to your whole computer being taken over. Notice main  takes argv[1]

and passes it in to f , so whatever word the user types in after the name of the

program, and then f  takes it, which we’ve called bar , and copies it into c , which

can hold 12 characters. c  is a local variable of 12 char s so it will live on the stack.

strncpy  copies a string, but only n  letters, in this case strlen(bar) , or the

length of the user-inputted string.

# The problem is that we’re not checking for the length of bar , so if it were 20

characters long, it would overflow and take up 8 more bytes than it should.

• The implication is this diagram of a zoomed-in version of the bottom of the program’s

stack:

|  unallocated stack space  |

-----------------------------

| c[0] |                    |

| ---- |                    |

|                           |

|         char c[12]        |

|                           |
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|                   | ----- |

|                   | c[11] |

-----------------------------

|         char* bar         |

-----------------------------

|                           |

-----------------------------

|       return address      |

-----------------------------

|   parent routine's stack  |

# At the very bottom is the parent routine’s stack, in this case main , or whichever

function that called this one.

# return address has always been there, which was copied over along with local

variables when the function was called, and this is just where in memory the program

should jump back to, once the function returns. In this case, it’s somewhere in

main .

# The top is the stack frame for the function. There’s bar , an argument to the

function, and c , an array of characters. And to be clear, on the top left would be

c[0] , the first character, with the last, c[11] , on the bottom right corner.

• What happens if we pass in a string  with char* bar  longer than c ? You would

overwrite char* bar  and, even worse, the return address. Then the program would

go back to, well, anywhere in memory that bar  specified. When bad guys are curious

if a program is buggy or exploitable, they send lots of inputs of different lengths, and

when it causes your program to crash, then they have discovered a bug.

• In particular, the best case might look something like this:

|  unallocated stack space  |

-----------------------------

|  h   |  e   |  l   |  l   |

| ---- | ---- | ---- | ---- |

|  o   |  \0  |             |

| ---- | ---- |             |

|         char c[12]        |

|                           |

|                           |

-----------------------------

|         char* bar         |
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-----------------------------

|                           |

-----------------------------

|       return address      |

-----------------------------

|   parent routine's stack  |

# The string passed in is just hello , which fits in c .

• But what about "attack code" that looks like this?

                |  unallocated stack space  |

  Address       -----------------------------

  0x80C03508 -> |  A   |  A   |  A   |  A   |

                | ---- | ---- | ---- | ---- |

                |  A   |  A   |  A   |  A   |

                | ---- | ---- | ---- | ---- |     char c[]

                |  A   |  A   |  A   |  A   |

                -----------------------------

                |  A   |  A   |  A   |  A   |     char* bar

                -----------------------------

                |  A   |  A   |  A   |  A   |

                -----------------------------

                | 0x08 | 0x35 | 0xC0 | 0x80 |    return address

                -----------------------------

                |   parent routine's stack  |

# In this picture, the A s are arbitrary zeroes and ones that can do anything, maybe rm

-rf  or send spam, and if that person includes those, but also has the last 4 bytes be

the precise address of the first character of the string , you can trick a computer

into going back to the beginning of the string  and executing the code, instead of

simply storing it. The return address, among other things, has been overwritten, and

generally it’s "shellcode" that gives a bad guy control over a computer, through Bash

or some other shell. (And if you’ve noticed, the return address is the address of the

first A , with the order of the bytes reversed. This is called little-endianness2 — an

advanced topic we won’t need to worry much about yet!)

• So in short, this bug came from not checking the boundaries of your array, and since

the computer uses the stack from bottom up (think trays from Annenberg being stacked

2  http://en.wikipedia.org/wiki/Endianness

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness
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on a table), while arrays you push on the stack are written to from the top down, this is

even more of a concern. And though there are ways and entire languages around this

problem (Java is immune to this since they don’t give you pointers or direct access to

memory addresses), the power of C comes with great responsibility and risk. If you even

read articles about "buffer-overflow attacks," then they’re probably talking about this.

Malloc

• malloc  is our friend since we can allocate memory if or when we want it, so we don’t

have to hardcode it.

• All of malloc 's memory comes from the heap, if we refer back to this general diagram:

-----------------------------

|                           |

|           text            |

|                           |

-----------------------------

|      initialized data     |

-----------------------------

|     uninitialized data    |

-----------------------------

|           heap            |

|             |             |

|             |             |

|             v             |

|                           |

|                           |

|                           |

|             ^             |

|             |             |

|             |             |

|           stack           |

-----------------------------

|   environment variables   |

-----------------------------

• This is how GetString  can allocate memory without knowing how much you’ll type

beforehand, return a pointer to you to that memory, and allow you to keep that memory

after GetString  returns. Remember that the stack goes up and down as functions

are called and as they finish, in the bottom half of the diagram. And malloc  allocates
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from the top, so the data stored there isn’t impacted by the movements of the stack, so

you can use the variables after the function returns.

• The opposite of malloc  is free , and a good rule to start thinking about is that you

should be using free  every time you’re done with something you used malloc  to

get.

• All this time we’ve been writing buggy code, by using the CS50 Library to GetString ,

which leaks memory. We’ve been asking the operating system for memory, and never

returning it. valgrind  will help us find these leaks!

• malloc  will also help us solve problems much more effectively. So far, the fanciest

data structure (a way of clustering things together beyond just a single int  or char ),

we’ve had is the array, which is continuous chunks of memory, each of which is the

same type.

# But there are downsides to arrays. They have limited size, and once an array is filled,

we might try to put another item at the end, but the next chunk of memory following

it might be used by another variable. (Think to last time when we had Zamyla  and

Daven  and Gabe  in memory as string s). We might make another array of one

size bigger, and copy over all the elements from the old array to the new array, but

that’s inefficient. So we have the benefit of random access, but not dynamic resize.

We can implement binary search and other algorithms that divide and conquer, but

we can’t change the size easily once we fill up the array.

Linked Lists

• Another data structure is a linked list. Instead of rectangles back-to-back, we have

rectangles with a bit of space:

# The boxes look orderly in the image, but in reality they might be all over the place,

with arrows that link each rectangle to the next.
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• We’ve used pointers to represent an arrow, so instead of an array that only stores

numbers, we can store a pointer next to each number that weaves all of these

rectangles together.

• If we wanted to implement this, we’d start by noticing that each of these rectangles

aren’t a single number, but rather an int  (though they can have anything) and a

pointer :

• To create our own data structure, we just have to define a struct  like we’ve seen

before:

typedef struct

{

    string name;

    string house;

}

student;

• Now we can take that idea and do something like the following:

typedef struct node

{

    int n;

    struct node* next;

}

node;

# A node  is a general computer science term for an element in a data structure.

• Our node  will have the int  and also a struct node* , or pointer to another node.
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• typedef struct node  is also at the top, for node  to be able to refer to itself or

another node , or self-referential. Notice how we didn’t need that for student  since

they don’t need to refer to another student.

• Let’s take a look at ./list-0 3:

jharvard@appliance (~): ./list-0

MENU

1 - delete

2 - insert

3 - search

4 - traverse

0 - quit

# Notice the interface with a menu that allows the user to input an option.

• Let’s recreate the list from the diagram above:

jharvard@appliance (~): ./list-0

MENU

1 - delete

2 - insert

3 - search

4 - traverse

0 - quit

Command: 2

Number to insert: 9

LIST IS NOW: 9

MENU

1 - delete

2 - insert

3 - search

3  http://cdn.cs50.net/2014/fall/lectures/5/w/src5w/

http://cdn.cs50.net/2014/fall/lectures/5/w/src5w/
http://cdn.cs50.net/2014/fall/lectures/5/w/src5w/
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4 - traverse

0 - quit

Command: 2

Number to insert: 17

LIST IS NOW: 9 17

• So we inserted 9  and 17 , but now let’s try to insert 26  before 22 :

MENU

1 - delete

2 - insert

3 - search

4 - traverse

0 - quit

Command: 2

Number to insert: 26

LIST IS NOW: 9 17 26

MENU

1 - delete

2 - insert

3 - search

4 - traverse

0 - quit

Command: 2

Number to insert: 22

LIST IS NOW: 9 17 22 26

# Both were inserted, and the list was still sorted after, so everything seems to work.

• Now let’s finish creating the list by inserting 34 , and just to be sure, we can search

for 22 :

MENU



Week 5, continued

11

1 - delete

2 - insert

3 - search

4 - traverse

0 - quit

Command: 2

Number to insert: 34

LIST IS NOW: 9 17 22 26 34

MENU

1 - delete

2 - insert

3 - search

4 - traverse

0 - quit

Command: 3

Number to search for: 22

Found 22!

• To implement this, list-0.h  might include something like this:

typedef struct node

{

    int n;

    struct node* next;

}

node;

• And list-0.c  might include lines like these:
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#include "list-0.h"

void search(int n);

int main(void)

{

    // TODO

}

void search(int n)

{

}

# search  would be one of the functions that finds an element in the list, if it exists.

• We also need to make the list itself, so let’s we refer back to that diagram:

• So it seems like we only need to remember a pointer to the first node, and the rest will

be attached as they are created. So we can write:
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#include "list-0.h"

// declare linked list up here

node* first = NULL;

void search(int n);

int main(void)

{

    // TODO

}

void search(int n)

{

}

# and set first = NULL  because there is no pointer there yet.

• But if we only remember the first node, then we have to make sure the end with a NULL

is properly implemented, much like a string  needs a terminating character.

• Since there are no elements in the list, then having the pointer to the first  node be

NULL  is all we need.

• How long might it take to reach an element in this list? #(n), which isn’t bad, but is

linear. We’ve given up the random access that arrays allow, since malloc  gives us

memory from wherever it is available in the heap, and the addresses of each node

could be spaced far apart.

Searching

• So if we wanted to implement a search  function, we start with this:
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#include "list-0.h"

// declare linked list up here

node* first = NULL;

void search(int n);

int main(void)

{

    // TODO

}

void search(int n)

{

    node* ptr = first;

}

# The variable is named ptr  by convention, and will keep track of where we are in

the list.

• And add a bit more:
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#include "list-0.h"

// declare linked list up here

node* first = NULL;

void search(int n);

int main(void)

{

    // TODO

}

void search(int n)

{

    node* ptr = first;

    while (ptr != NULL) 

    {

        if (ptr->n == n) 

        {

            // announce that we found n

            break;

        }

        else

        {

            ptr = ptr->next;

        }

    }

}

# Lots of things to notice here. Line 16 creates a loop that we will continue to run until

we get to NULL , or the end of the list.

# Then in line 18, we check if the number stored at ptr , ptr->n , is what we’re

looking for. The ->  is syntax for going to the location from pointer ptr  and

retrieving the variable n  stored within that struct, since ptr  isn’t a node  itself

but rather a node* . (You could also use (*ptr).n , meaning go to ptr  and

then get the n  field, since *ptr  is a struct. And ptr->n  is exactly the same, just

"syntactic sugar," or something that makes the code look better.)
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# If the number isn’t what we’re looking for, then we set ptr  to ptr->next , which

is moving our placeholder to the next node  in the linked list.

• If we look through the actual implementation of list-0.c , the code is not fun to walk

through, but the concepts are quite intuitive.

• Let’s think about this with help from volunteers from the audience.

• We line up people to represent each rectangle, with Gabe on the far left to represent

first , which is just a pointer:

[]----->[9]--->[17]--->[22]--->[29]--->[34]

                                        |

                                        V

# And we have everyone pointing to either the next node , or in the case of 34 ,

pointing downward to represent NULL .

Inserting

• Now let’s try to insert the element 55 , held by David. Let’s consider the different cases,

with 3 possible situations: 55  might go at the beginning, in the middle, or at the end.

• Remember that for the search  function, we start by initializing a ptr  that points not

at first , but 9 , since that’s what first  points to. Then it moves down the list

following the arrows until it finds the element or reaches the end.

• Our insert  function will do the same, but comparing if 55  is less than each element,

since we want to keep the list sorted. So we get to the end, and the pointer in the node

of 55  will be NULL  and the pointer of 34  will change to point to the node containing

55 :

[]----->[9]--->[17]--->[22]--->[29]--->[34]--->[55]

                                                |

                                                V

• And this is image is another way to look at it:
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• Now let’s say we have to insert to the beginning of the list, a number like 5 . We start

by intializing our ptr  to the point to the first element, 9 , and realize that 5  is less

than 9 . So now Gabe, first , needs to point to the node of 5  and the node of 5

will now point at 9 :

[]----->[5]--->[9]--->[17]--->[22]--->[29]--->[34]--->[55]

                                                       |

                                                       V

• Here is the corresponding image:

# And in the images, predptr  and newptr  are just the names given in the sample

code to David’s hands when he’s pointing around.

• Now let’s consider inserting a node into the middle, like the number 20 . We go through

the list, and realize that 20  is less than 22 . Now we need predptr , predecessor

pointer, that points to the element just before. Now when we get to 22 , we can change

the pointer in 17 , the element that should be before 20 , to point to 20 :
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[]----->[5]--->[9]--->[17]--->[20]--->[22]--->[29]--->[34]--->[55]

                                                               |

                                                               V

• Notice that predptr  points to 17 , so we can update it to point to 20 , and then

we’re done:

• Even though this seems like a pain to do, the operations are pretty simple with just

a few lines of code, but require some logic to figure out where we are and where we

should move things.
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Removing

• We can also implement a remove  function, where, if we wanted to remove 55 , we

have to free  that node, and change the pointer in 34  to point to NULL , lest we go

back down the list and try to access memory that we’ve returned

• Removing the head of the list also requires some care. If we wanted to remove 5 ,

we’d change first  to point to 9 , but also free  5 , or else we’d leak memory by

keeping nodes we’re no longer using:

• Removing in the middle follows similar logic:

• But the important thing to consider is the running time. We’ve seen #, upper bound,

and Ω, lower bound, of an algorithm, so let’s think about linked lists.
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# Running time of search  has #(n) if the element was at the end. And even if our list

was sorted, we can’t jump around with binary search since we’d have to start from

first  and move through. In the best case, we would have Ω(1) if the element we

were looking for was first.

# Deleting an element would also have #(n) and Ω(1), the same logic. Even though

we had to take multiple steps to remove even the first element, it is still constant

time since it takes the same amount of time no longer how big the list is.

# This seems like a waste of time since we used to have something on the order of

log n  for binary search. But a linked list allows us to add elements, and we’ll see

this theme of having a tradeoff (just like how merge sort was faster, but needed

extra space). A linked list trades time for flexibility, dynamism, which is a positive

feature. And it also requires extra space, a pointer for every element, which doubles

the space if we’re storing int s. But if each node represented a word, then adding

a pointer wouldn’t be as big a deal. Or even if each node was a struct  with many

fields, so as our data types get bigger, adding an additional pointer is even less

significant.

• But is there a holy grail of a data structure where search, delete, and insert are all

constant time with #(1)? Find out next time.
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