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Announcements

• We had some audio issues that turned out to be a bad cable, so we had some quick

photo and question-and-answer opportunities with the handful of us who were there.

(We get really casual on Fridays.)

# Fun fact, we have data from last year that shows lecture attendance from lecture

to lecture, with attendance increasing slightly every Monday, but declining by

Wednesday and generally from week to week.

# The one lecture on Friday saw a huge drop!

• Today we’ll look more at data structures for Problem Set 5: Mispellings, where we give

you a dictionary of words to load into memory.

Linked List Recap

• One way to do this is with a linked list. The linked list we introduced last time had at

least one advantage over arrays.

# Dynamic insertion is possible with a linked list, meaning we can place a new element

anywhere inside the list without having to shuffle anything, since it takes a lot of
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time to move those elements around. But with a linked list, it’s just a malloc  and

updating a few pointers.

# Linked lists can also be resized easily, meaning you’re not committing some fixed

size of memory like an array, so you can use exactly as much memory as you need.

But with an array, you might accidentally allocate too little, and need to make a new

array, or accidentally allocate too much and waste memory.

• Dynamism and flexibility are the advantages, but with that said:

# There is no random access, so algorithms like binary search can’t just find the middle

element and jump to it. To find an element, we would have to start at the first one

and linearly search through the list.

# The pointers in each node take up additional memory, so a linked list for integers

will use up twice as much memory with the addition of the pointer. This becomes

less significant as your nodes start to include more fields, and the relative size of

the pointer to the next node will diminish.

• Recall that insertion, search, and deletion on a linked list are #(n), or linear, as the

element could be at the end. You might get lucky and find the element as the first in

the list, for a lower bound of Ω(1).

• But we want to be able to have #(1), finding or adding or removing elements in constant

time.

Hash Tables

• Let’s look at some blue books, each labeled with some letter of the alphabet. If they

were shuffled and we started to sort them, we might instinctively start putting them into

piles based on the first letter, and later go sort each pile individually.

# The idea is that we look at the input and make a decision based on that input (A

goes in this pile over here, Z goes in that pile over there). This technique is known

as hashing, or taking an input and computing a value, generally a number, that

becomes the index into a storage container (like an array).

# We might map A to 0, and Z to 25, and place them into numbered piles that way.

# A C program could just use the ASCII value, but subtract 65 from a capital A, or 97

from a lowercase a, so we can place them in buckets starting from 0.
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# We actually do this with quizzes, placing them into piles based on TF, so each TF

can find their students' quizzes easily.

# During the CS50 Hackathon last year, we also separated nametags into piles by

alphabet, so greeters like Zamyla could find them more easily as people arrived.

# One TF made a clever sign reading "Hash Yourself (by First Name)."

• Let’s formalize this idea. The following is an array with the index of each row on the left:

# This array  has 26 elements and is named table .
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• This is one implementation of a hash table, a higher-level data structure, which could

use an array or linked list or some other fundamental ingredient as a building block to

making a more useful final result.

• We can simply declare a hash table with something like char* table[CAPACITY]; ,

in which case it will be an array with size CAPACITY , but we might call a hash table

an abstract data type that is layering on top of this array.

• Earlier we used a physical table to place piles of blue books by the letters they were

labeled. But the table is actually a fixed size, and if we had two elements of the same

number, we couldn’t really place them into the same spot if the table was really an array.

• So maybe we could place it into the next spot, where a book with the letter B would go.

But now the B will go lower, and could become problematic, but is a technique called

linear probing where we look at each element in the array, looking for an available

spot to put the next one.

• Insertion starts by being #(1) since the array is empty and you can jump to the correct

location immediately, but once your data set becomes larger, insertion becomes #(n)

since we have to move down the array looking for a spot. If your array is big enough

and your data is sparse enough, you get the advantage of constant time, but the risk

makes linear probing imperfect.

Separate Chaining

• We can do better by using linked lists. Let’s look at this picture of separate chaining.
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# This image, from some dusty textbook of David’s era (as you can tell by the old-

fashioned names), is an array of size 31, with strings hashed not by the letters they

are made of, but the day of the month the person was born in, so the names might

be spread out a bit more evenly.
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• But this is still troublesome since people certainly have the same day of the month they

were born on, so it looks like we have an array on the left side (drawn vertically), that

looks like it’s an array of linked lists.

# As we get more advanced, we can start combining fundamental ingredients into

things like this, with basic blocks of arrays and linked lists and structs combined to

create a more sophisticated data structure.

• The hash table above is an array with "chains" that can grow or shrink based on the

elements you insert and remove.

• The running time now for insertion still becomes #(n), for example if we run into lots

of people born on the 31st, but it’s a little better than linear probing. In the worst case,

say everyone was born on the 31st, the chain will be n people long, but in general

if birthdays are close to being uniform, the chains will eventually be about the same

length and we can claim we have #(n/31). Though technically we have to look at the

biggest term and simplify that to #(n) because n/31 asympototically approaches n as

n gets bigger and bigger, in reality (as you’ll see in Problem Set 5), this algorithm will

be about 31 times faster.

• Realize that theoretical analysis has value, but in the real world small differences can

make things much faster.

• We could even combine names and birthdays somehow to create a larger hash table

that’s even more uniform and have smaller chains, and be even faster.

• Let’s borrow code from before:

typedef struct node

{

    char* word;

    struct node* next;

}

node;

# So we start by creating node s for storing strings (remember that we’ve taken off

the training wheels of the CS50 Library and revealed them to be char* s). In this

case, we’ll plan on storing a person’s name in the string word . And these node s

will represent a node in the chains of a linked list.

• Now we have to declare the whole structure of the hash table:

node* table[CAPACITY];
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# We’ll have an array with each element being a pointer that points to the first element

of the linked list in that spot. Let’s take a look at the picture again:

# The slots with a slash through them are pointers to NULL , and the ones that have

a linked list will only store the pointer to the first element of that list.

• Let’s try to get a data structure with constant time. The hash table with separate

chaining is not quite there yet.
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Trees and Tries

• Instead of a hash table, we can use a tree, like a family tree. If we started with an empty

tree, we can create a node that looks like this:

# And each box within this rectangle (which has a total of 26 elements in it) will be

a letter of the alphabet. Specifically, the first box will be the letter A, the second B,

and so on.

• If we wanted to insert the name of "Daven", we’d first need to hash his name and realize

it starts with D. But we can’t fit Daven’s entire name into the rectangle, so we can build

a tree by allocating another node (rectangle) for each letter, and setting the pointers of

each letter to the next node like this:
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• For the final letter in Daven’s name, we don’t want to put just NULL  since Daven

is actually short for Davenport  and we want to accept both strings, so we should

actually split each box in all these rectangles into two. Here, we’ve only drawn the last

box, labeled n, as containing two fields. We can use the top one as a signal for the end

of a string, and the bottom one as the pointer:
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• This looks complicated, and already messy because of David’s handwriting, so

consider a tree that looks like this:1

1Figure from Lewis and Denenberg’s Data Structures & Their Algorithms.
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# Each rectangle has 27 indices, because we’ll allow for a word to have an apostrophe.

• We’ll start to call this data structure a trie, a clever name for a tree optimized for

retrieval, but that’s spelled with "ie", so it ends up being pronounced like "try." Go figure.

• These tries use a lot of memory since each node allocates space for so many indices,

and most of that space will be empty, at least initially when we have few strings.
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• But we gain speed and spend less time, since insertion time will be #(1), since no one

has an infinitely long name. The longest word in the dictionary for the problem set will

be 40-something letters long, but it will be constant and not depend on how many other

names are in this data structure. The running time will now depend on the length of the

string, which is asymptotically #(1).

• We might implement this with something like this:

typedef struct node

{

    bool word;

    struct node* children[27];

}

node;

node* trie;

# Each node  will have a bool  indicating whether it could be the end of a word, and

an array  with 27  node  pointers.

• To declare our trie, all we need is a single node*  that points to the root element, just

like a linked list.

• Looking back to our chart, if we wanted to insert a name like "Dave," all we need to do

is follow the pointers and change the box to mark that we are at the end of a word:
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Stacks and Queues

• Remember that trays from dining halls can be stacked, and there exists a data structure

called a stack where you can perform two operations, push (adding a tray to the stack)

and pop (taking a tray from the top).

• We have this property where the last item in is the first item out (LIFO) with interesting

applications that we’ll look at another time.

• A similar idea is a queue where the first item in is the first item out, (FIFO), enqueue

(adding) and dequeue (subtracting).

# Imagine a line where the person waiting first gets to go first — that’s a queue.

• We won’t really go into the code but if we think abstractly about adding people to a line

one at a time, a linked list would work since we can add spots and people as needed,

but an array would also work if we knew we had a limited number of spots.
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• So we’re reaching the point of having higher-level problems that can be implemented

in a number of ways, giving us the flexibility of choosing between tradeoffs like time

and space and code complexity.

• A stack can be an array (in Mather the trays in the dining hall are in an opening in a

cabinet of a fixed height, so it’s almost as though they’re using an array) but can be

a linked list too.

Trees Again

• Let’s look at one more data structure, a simpler tree like this:2

• Each node is just a number, with other words like leaves and children and parents

and siblings as illustrated.

• One way to implement a tree in code might look something like this:

2Figure by Larry Nyhoff.
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typedef struct node

{

    int n;

    struct node* left;

    struct node* right;

}

node;

# Notice that we have set aside memory in each node to store two pointers, allowing

us to build something like a two-dimensional linked list that follows a pattern.

# This structure is still a tree, as it has no cycles, with a grandparent at the very top,

and then parents and children and grandchilddren and so forth.

• Thinking back to recursion, if we put the integers in a sorted way like this, we’ll have

a binary search tree:3

# Smaller numbers are on the left and bigger ones are on the right, so a parent is

greater than its left child, but less than its right child, and this will only reach a base

case when we are at the leaves, or the nodes at the very bottom of the tree, which

have no more children.

3Figure from http://cs.calvin.edu/books/c++/ds/1e/.

http://cs.calvin.edu/books/c++/ds/1e/
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# To find the number 44 in this tree, we would go left from 55 since 55 > 44, then see

that the child is 33, and go right, since 33 < 44.

• So we can implement the binary search algorithm a bit more elegantly than an array

would allow, with code like this:

bool search(int n, node* tree)

{

    if(tree == NULL)

    {

        return false;

    }

    else if (n < tree->n)

    {

        return search(n, tree->left);

    }

    else if (n > tree->n)

    {

        return search(n, tree->right);

    }

    else

    {

        return true;

    }

}

# We are looking for n , given tree , which is a node*  to the root of the tree. We

implement the logic fairly straightforwardly.

# If tree  is NULL , then there are no nodes so we return false.

# The middle two conditions compare n , the value we are given, to tree->n , which

dereferences tree  and accesses the n  field stored within. If the n  we are looking

for is less, we search again with the left child of the tree by calling search(n,

tree->left) , which makes our problem smaller. Likewise, if n  is greater, we

search with the right child of the tree.

# Finally, if the tree  is not NULL  and n  is neither greater than or less than tree-

>n , then we found the value and can return true .
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• So we introduce these data structures for you to evaluate and use in Problem Set 5,

but let’s conclude on a teaser4 of how the real world implements web applications, as

we transition to using higher-level languages.

4  http://youtu.be/Cb8b1RMX6XY

http://youtu.be/Cb8b1RMX6XY
http://youtu.be/Cb8b1RMX6XY
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