
1

Week 7, continued

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Announcements .. 1

HTTP Review ... 2

HTML .. 3

Servers and Permissions ... 7

Links ... 13

Lists, Paragraphs, Tables .. 18

Forms ... 23

CSS .. 30

PHP .. 40

Announcements

• CS50 Lunch is again this Friday 10/24 at 1:15pm, RSVP at the usual http://

cs50.harvard.edu/rsvp.

• Jason dressed as a pumpkin one year for his section that happened to land on

Halloween 2011 (Section 81 at cs50.tv2), and that year his air pump was working, but

by 2012 his costume was deflated.

• If you want to join us in pumpkin carving with Daven and Gabe this Friday 10/24, 3pm,

RSVP by emailing heads@cs50.harvard.edu3.

• The final project will be discussed soon, but they can be almost any project of interest

to you, with the approval of your teaching fellow.

• To help you with that, we will have seminars, optional classes taught by teaching fellows

and other staff from across campus, on various topics that are fun and different. This

year’s lineup:

1 http://cs50.tv/2011/fall/sections/8/section8.mp4
2 http://cs50.tv
3 mailto:heads@cs50.harvard.edu

http://cs50.harvard.edu/rsvp
http://cs50.harvard.edu/rsvp
http://cs50.tv/2011/fall/sections/8/section8.mp4
http://cs50.tv
mailto:heads@cs50.harvard.edu
http://cs50.tv/2011/fall/sections/8/section8.mp4
http://cs50.tv
mailto:heads@cs50.harvard.edu

Week 7, continued

2

3D Modeling and Manufacture

Amazing Web Apps with Ruby on Rails

Android 101

Breaking Through The (Google) Glass Ceiling

Build Tomorrow’s Library

Cloud Computing with Amazon Web Services (AWS)

CSS: Awesome Style and Design

Data Analysis in R

Data Visualization and D3

Essential Scale-Out Computing

Exposing Digital Photography

How to Build Innovative Technologies

iOS App Development with Swift

Learning iOS: Create your own app with Objective-C!

Light Your World (with Hue Bulbs)

Meteor: a better way to build apps

Teach Your Computer to See: Augmented Reality with OpenCV

Transitioning to Agile Development from Waterfall

• If you want to register or see more information about these topics, visit http://

cs50.harvard.edu/register.

HTTP Review

• We began and concluded on Monday with HTTP, Hypertext Transfer Protocol, which

is just the way your web browser speaks to a web server, like the way humans extend

a hand to each other to make a handshake.

• A protocol is just a set of conventions of sending information back and forth, like this

familiar picture:

• The most common method used is GET, that looks like this:

http://cs50.harvard.edu/register
http://cs50.harvard.edu/register

Week 7, continued

3

GET / HTTP/1.1

Host: www.google.com

...

• And that request is placed inside a digital envelope with the IP address of the computer

it is from, and the IP address of the recipient. But we need one more piece of

information, the port number, since the server might be listening for different kinds of

communication. Port 80 is the most common as it’s the default for web traffic, so we’ll

see that often, along with 443, used for secure web traffic (HTTPS).

• Also remember that the / after GET means that we want the root of the web server,

or the default webpage.

• Hopefully the server responds with something like this:

HTTP/1.1 200 OK

Content-Type: text/html

...

• And the number 200 is a convention saying that everything okay, with the Content-

Type of the message text/html , and the … will be the webpage itself.

• So now we can pick up by writing HTML, Hypertext Markup Language, that we’ll use

to write webpages and specify their structure and style.

HTML

• On Monday we looked at this:

<!DOCTYPE html>

<html>

 <head>

 <title>hello, world</title>

 </head>

 <body>

 hello, world

 </body>

</html>

Week 7, continued

4

Notice the angle brackets and the words between those brackets, which we’ll start

calling tags. So <head> and </head> are the open and close tags, or the start

and end tags, of an HTML element called head. The same applies to <body> and

<html> and so forth.

• We’ll look at more elements as we need them.

• Browsers interpret HTML pretty straightforwardly. When we say <html> that just

means "here’s the start of our HTML page", <head> means "this is the start of the

head section", </head> means "this is it for the head section, stand by for something

else", and so forth.

• Text that isn’t in a tag, like hello, world , will just be displayed in the screen.

• Notice the indentation, where we indent every time a new tag is opened, and unindent

when it is closed, just like curly braces.

With <title> , we used our judgment in keeping it on the same line since it looks

cleaner, fits easily in one line, and only contains one inner element.

• The indentation could also help us think of the webpage as a tree:

Week 7, continued

5

The html tag is like the root of the tree.

We’ll call this tree the Document Object Model (DOM) that represents the HTML.

html has two children, with head on the left and body on the right, and head

has one child, title , which itself has a child, hello, world . The oval conveys

that it’s not a tag or element, but just text. These are all just arbitrary conventions

that we use to represent an HTML document in a tree like this.

Week 7, continued

6

And as another note, <!DOCTYPE html> in our original source code is not a tag,

but rather just a line placed there to indicate to the browser that this is an HTML5

file (different versions have different declarations4).

• Let’s open hello.html with gedit in the appliance:

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 hello, world

 </body>

</html>

This is a webpage that lives on the Desktop (or wherever you’ve saved it) and can

be opened in Chrome with control-o:

Notice that the URL in the address bar reads file:///home/jharvard/

Desktop/hello.html , indicating that we are looking at a file on our local hard

drive, and no one else should be able to see it.

4 http://en.wikipedia.org/wiki/Document_type_declaration

http://en.wikipedia.org/wiki/Document_type_declaration
http://en.wikipedia.org/wiki/Document_type_declaration

Week 7, continued

7

Servers and Permissions

• We can fix this by using a web server. The CS50 Appliance, apart from being able to

compile and run C code in a standard environment, has also been configured to run

standard, open-source server software, including Apache (the most popular web server

software in the world) and MySQL (a database software we’ll get to). Basically, we can

use the appliance as a web server.

• First, we open our Terminal, and run the following:

jharvard@appliance (~): cd Desktop/

jharvard@appliance (~/Desktop): ls

hello.html

jharvard@appliance (~/Desktop): mv hello.html ../vhosts/localhost/public/

The last command moves our file hello.html into a folder in our home directory.

vhosts is the root folder that the appliance’s server software looks into,

localhost literally just means "this computer5," and public means that

everything within that folder is public.

• We can check that it was indeed moved successfully with:

jharvard@appliance (~/Desktop): cd ../vhosts/localhost/public/

jharvard@appliance (~/vhosts/localhost/public/): ls

hello.html

• And now we can open a new tab in Chrome and enter http://localhost/

hello.html , meaning we’re visiting our own computer, and requesting the file

hello.html .

• If we compare what we see now with to we saw earlier, the page looks the same, with

the same "hello, world" text. But the difference now is that HTTP is being used.

• In the bottom right corner of the appliance, we have something that looks like this:

5 http://en.wikipedia.org/wiki/Localhost

http://en.wikipedia.org/wiki/Localhost
http://en.wikipedia.org/wiki/Localhost

Week 7, continued

8

• This is a private IP address, so only the local network can access it. And it’s the IP

address of David’s appliance, so yours might be different.

• We can open the version of Chrome on our Mac (that’s running the appliance), go to

http://172.16.254.133/hello.html , and see our webpage from our Mac. The

web server doesn’t have an easy-to-remember name, and isn’t accessible by the rest

of the Internet, but HTTP is indeed being used by Chrome on our Mac to communicate

with the server running on our appliance.

• Let’s go back to our appliance and gedit , and copy all the files from today’s source

code6 to the public folder, including cat.jpg , and change hello.html to look

like this:

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 cat.jpg

 </body>

</html>

But when we save and reload, all we see is this:

6 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/

Week 7, continued

9

• We need another tag to tell the browser what we want to do:

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 </body>

</html>

Note that, since the img tag is always going to be empty, it has the special syntax

of being closed with a /> at the very end.

• But when we reload, we see something like this:

Week 7, continued

10

• We can go to View, Developer, Developer Tools:

Week 7, continued

11

• And if we go to the Network tab and reload the page, we can look at the requests

being made:

• In particular, hello.html has a response of 200 OK, but cat.jpg has 403

Forbidden. (Recall that a 404 is returned when the file isn’t found, so we know

cat.jpg exists.)

• We can go back in our appliance, and run ls -l (bolded), which lists the files with

more details:

jharvard@appliance (~/vhosts/localhost/public): ls

cat.jpg css-1.html css-2.html hello.html link.html logo.gif

 search-0.html search-2.html search-3.html table.html

css-0.html css-2.css headings.html image.html list.html

 paragraphs.html search-1.html search-3.css search-4.html

jharvard@appliance (~/vhosts/localhost/public): ls -l

total 212

-rw------- 1 jharvard students 133986 Oct 22 13:26 cat.jpg

-rw------- 1 jharvard students 619 Oct 22 13:26 css-0.html

-rw------- 1 jharvard students 862 Oct 22 13:26 css-1.html

-rw------- 1 jharvard students 155 Oct 22 13:26 css-2.css

-rw------- 1 jharvard students 525 Oct 22 13:26 css-2.html

-rw------- 1 jharvard students 368 Oct 22 13:26 headings.html

-rw-r--r-- 1 jharvard students 143 Oct 22 13:27 hello.html

-rw------- 1 jharvard students 311 Oct 22 10:44 image.html

-rw------- 1 jharvard students 261 Oct 22 13:26 link.html

-rw------- 1 jharvard students 341 Oct 22 13:26 list.html

Week 7, continued

12

-rw------- 1 jharvard students 11988 Oct 22 13:26 logo.gif

-rw------- 1 jharvard students 1788 Oct 22 13:26 paragraphs.html

-rw------- 1 jharvard students 431 Oct 22 13:26 search-0.html

-rw------- 1 jharvard students 458 Oct 22 13:26 search-1.html

-rw------- 1 jharvard students 541 Oct 22 13:26 search-2.html

-rw------- 1 jharvard students 33 Oct 22 13:26 search-3.css

-rw------- 1 jharvard students 477 Oct 22 13:26 search-3.html

-rw------- 1 jharvard students 1126 Oct 22 13:26 search-4.html

-rw------- 1 jharvard students 714 Oct 22 13:26 table.html

We see hello.html and cat.jpg , but there are two r s for hello.html

that cat.jpg doesn’t (bolded).

• It turns out that we need to change the mode, or permissions, of the file, to allow the

world to read (view) cat.jpg .

• For hello.html , the r s are what allow everyone to read it. So we can run chmod,

which means "change mode," with a+r , which means "all+read," allowing everyone

to read, cat.jpg :

chmod a+r cat.jpg

• Now if we run ls -l (bolded), we see that the permissions have been changed:

jharvard@appliance (~/vhosts/localhost/public): ls -l

total 212

-rw-r--r-- 1 jharvard students 133986 Oct 22 13:26 cat.jpg

-rw------- 1 jharvard students 619 Oct 22 13:26 css-0.html

-rw------- 1 jharvard students 862 Oct 22 13:26 css-1.html

-rw------- 1 jharvard students 155 Oct 22 13:26 css-2.css

-rw------- 1 jharvard students 525 Oct 22 13:26 css-2.html

-rw------- 1 jharvard students 368 Oct 22 13:26 headings.html

-rw-r--r-- 1 jharvard students 143 Oct 22 13:27 hello.html

-rw------- 1 jharvard students 311 Oct 22 10:44 image.html

-rw------- 1 jharvard students 261 Oct 22 13:26 link.html

-rw------- 1 jharvard students 341 Oct 22 13:26 list.html

-rw------- 1 jharvard students 11988 Oct 22 13:26 logo.gif

-rw------- 1 jharvard students 1788 Oct 22 13:26 paragraphs.html

-rw------- 1 jharvard students 431 Oct 22 13:26 search-0.html

-rw------- 1 jharvard students 458 Oct 22 13:26 search-1.html

-rw------- 1 jharvard students 541 Oct 22 13:26 search-2.html

-rw------- 1 jharvard students 33 Oct 22 13:26 search-3.css

-rw------- 1 jharvard students 477 Oct 22 13:26 search-3.html

Week 7, continued

13

-rw------- 1 jharvard students 1126 Oct 22 13:26 search-4.html

-rw------- 1 jharvard students 714 Oct 22 13:26 table.html

• We can also do the opposite with chmod a-r cat.jpg if we want to take that

permission back.

• But let’s not do that, and instead go back to our Chrome window, and if we reload the

page, now we are able to see our grumpy cat.

Links

• Let’s try some other things. If we want a link, we could write something like this:

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 search for cats

 </body>

</html>

a opens the tag and is short for "anchor", href stands for "hypertext reference",

and href is not a tag but attribute, or something that can modify the behavior of

a tag. In this case, href will tell the anchor tag the address that it should link to

when it’s clicked. The text in between, search for cats , is what will be shown

to the human.

• We can see this if we save and reload:

Week 7, continued

14

And notice that we can be tricky by making the link go to somewhere else:

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 http://google.com/

 </body>

</html>

• Notice that now the link looks like it goes to http://google.com/ , but only when

we hover over it do we see that it doesn’t:

http://google.com/

Week 7, continued

15

• This is why you should never, ever click links in emails, because it’s really

easy to trick someone. (As an aside, someone actually bought the domain

http://www.bankofthevvest.com , which looks very much like http://

www.bankofthewest.com at first glance, in small font in an email, to try to trick

people.

• In fact, if we were to go to http://www.bankofthewest.com , we can click View,

Developer, View Source, and copy and paste the code we see into our own page:

http://www.bankofthevvest.com
http://www.bankofthewest.com
http://www.bankofthewest.com
http://www.bankofthewest.com

Week 7, continued

16

• It’s not quite this easy, but we see that we are making progress toward making our

own banking website:

Week 7, continued

17

• The other files that the website might be using, include CSS files or images, probably

need to be downloaded for the website to be complete.

Week 7, continued

18

Lists, Paragraphs, Tables

• Let’s look now at list.html 7:

<!DOCTYPE html>

<html>

 <head>

 <title>list</title>

 </head>

 <body>

 Cabot

 Currier

 Pforzheimer

 </body>

</html>

The tag stands for unordered list, and is a list item, making for a

list that looks like:

• We can change the tag to an tag for an ordered list, which will now

look like:

7 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/list.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/list.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/list.html

Week 7, continued

19

• In paragraphs.html 8, we use the <p> tag to signify paragraphs:

8 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/paragraphs.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/paragraphs.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/paragraphs.html

Week 7, continued

20

...

<p>

 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam in

 tincidunt augue. Duis imperdiet, justo ac iaculis rhoncus, erat elit

 dignissim mi, eu interdum velit sapien nec risus. Praesent ullamcorper

 nibh at volutpat aliquam. Nam sed aliquam risus. Nulla rutrum nunc augue,

 in varius lacus commodo in. Ut tincidunt nisi a convallis consequat.

 Fusce sed pulvinar nulla.

</p>

<p>

 Ut tempus rutrum arcu eget condimentum. Morbi elit ipsum, gravida

 faucibus sodales quis, varius at mi. Suspendisse id viverra lectus.

 Etiam dignissim interdum felis quis faucibus. Integer et vestibulum eros,

 non malesuada felis. Pellentesque porttitor eleifend laoreet. Duis sit

 amet pellentesque nisi. Aenean ligula mauris, volutpat sed luctus in,

 consectetur id turpis. Phasellus mattis dui ac metus blandit volutpat.

 Donec lorem arcu, sollicitudin in risus a, imperdiet condimentum augue.

 Ut at facilisis mauris. Curabitur sagittis augue in dictum gravida.

 Integer sed sem sed justo tempus ultrices eu non magna. Phasellus semper

 eros erat, a posuere nisi auctor et. Praesent dignissim orci aliquam

 laoreet scelerisque.

</p>

<p>

 Mauris eget erat arcu. Maecenas ac ante vel ipsum bibendum varius.

 Nunc tristique nulla eget tincidunt molestie. Morbi sed mauris eu lectus

 vehicula iaculis ac id lacus. Etiam sit amet magna massa. In pulvinar

 sapien ac mi ultrices, quis consequat nisl hendrerit. Aliquam pharetra

 nec sem non vehicula. In et risus leo. Ut tristique ornare nisl et

 lacinia.

</p>

...

• We keep getting a 403 Forbidden, so we’ll run

jharvard@appliance (~/vhosts/localhost/public): chmod a+r *.html

which will make all the .html files in our public folder readable.

• And now we see our paragraphs:

Week 7, continued

21

• We can also make tables with table.html 9:

9 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/table.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/table.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/table.html

Week 7, continued

22

<!DOCTYPE html>

<html>

 <head>

 <title>table</title>

 </head>

 <body>

 <table border="1">

 <tr>

 <td>1</td>

 <td>2</td>

 <td>3</td>

 </tr>

 <tr>

 <td>4</td>

 <td>5</td>

 <td>6</td>

 </tr>

 <tr>

 <td>7</td>

 <td>8</td>

 <td>9</td>

 </tr>

 <tr>

 <td>*</td>

 <td>0</td>

 <td>#</td>

 </tr>

 </table>

 </body>

</html>

It’s a bit more complicated, but <tr> stands for table row, and <td> for table

data, or each cell in a table, and we see that it looks like this:

Week 7, continued

23

• HTML has lots of tags, and we can pick up the language as we need to, as long as

we know the concepts of tags and attributes and how to form and structure HTML as

we’ve seen.

Forms

• Let’s go back to our browser and search for cats. The URL becomes really long

immediately:

Week 7, continued

24

• So let’s delete what we don’t understand, and see what happens:

• It looks like the search still works, so Google is adding some unnecessary stuff. But

now that we have a simple URL, we can open our friend Developer Tools, and look

in the Network tab:

Week 7, continued

25

As an aside, we want to hold shift as we click the reload button, since it will make

Chrome request the entire webpage again. Otherwise, browsers tend to cache, or

save, information, to make loading faster, but we want to start over here to see

what’s happening.

Week 7, continued

26

We see all the requests, that are not only for text, but also images, icons, and pieces

(like Scratch pieces), that the browser puts together to make a complete page.

• When the browser gets that initial HTML file, it goes through and looks for image tags

and other tags that requires other files, and uses HTTP (think of the envelopes) to

request those pieces and place them where they should go.

• We can also see that we’ve sent a request with HTTP/1.1 and the path /search?

q=cats

• So it seems like we can create our own search engine front-end (user interface)

knowing that the requests are in this format.

• Let’s look at search-0.html 10:

10 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-0.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-0.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-0.html

Week 7, continued

27

<!DOCTYPE html>

<html>

 <head>

 <title>CS50 Search</title>

 </head>

 <body>

 <h1>CS50 Search</h1>

 <form action="https://www.google.com/search" method="get">

 <input name="q" type="text"/>

 <input type="submit" value="CS50 Search"/>

 </form>

 </body>

</html>

In line 6, we use the h1 tag, which specifies that it is a heading that formats the

text to be bigger and bolder.

In line 7, we open the form tag, with an action attribute that we set to

https://www.google.com/search based on what we’ve seen in their URLs.

(method="get" refers to using the GET method in the HTTP protocol, as opposed

to something like POST, which we’ll see later.)

In line 8, we create an input that accepts text , and it should be called q based

again on what we saw in the original URL, https://www.google.com/search?

q=cats . (q is probably just short for query.)

• Now if we go to search-0.html in our browser and input cats , we are indeed

brought to the page we expected:

https://www.google.com/search
https://www.google.com/search?q=cats
https://www.google.com/search?q=cats

Week 7, continued

28

Week 7, continued

29

Google automatically adds the extra parameter because we’re visiting the secure

site, but notice that we’ve built this URL.

• In general, the form allows us to choose a URL to go to when it’s submitted, as well

as appending a parameter based on its input.

• But we can make it look a bit better. Let’s open search-1.html 11:

11 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-1.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-1.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-1.html

Week 7, continued

30

<!DOCTYPE html>

<html>

 <head>

 <title>CS50 Search</title>

 </head>

 <body style="text-align: center">

 <h1>CS50 Search</h1>

 <form action="https://www.google.com/search" method="get">

 <input name="q" type="text"/>

 <input type="submit" value="CS50 Search"/>

 </form>

 </body>

</html>

We see that line 5 is a bit strange, and what it does is pretty straightforward,

centering everything on the page:

CSS

• It turns out that we’re now using another language to do this: Cascading Style Sheets

(CSS).

Week 7, continued

31

• CSS styles the entire web today, and much like HTML it is a simple language, with

properties that can be learned as needed. The basic structure of CSS uses key-value

pairs, where "key" is some property, and "value" is just the value of that property.

• For example, in search-1.html , the key is text-align with the value center

that we combine with the : syntax. We can look up that the value for text-align ,

for instance, could be left , right , or center :

...

 <body style="text-align: center">

...

• Let’s open search-2.html 12:

<!DOCTYPE html>

<html>

 <head>

 <style>

 body

 {

 text-align: center;

 }

 </style>

 <title>CS50 Search</title>

 </head>

 <body>

 <h1>CS50 Search</h1>

 <form action="https://www.google.com/search" method="get">

 <input name="q" type="text"/>

 <input type="submit" value="CS50 Search"/>

 </form>

 </body>

</html>

We’ve done a little more here, by placing a <style> tag in the <head> section

of the page.

12 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-2.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-2.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-2.html

Week 7, continued

32

Within the <style> tag, we’ve put the name of the tag we want to change, body ,

above some curly braces, with the property and value within.

The end result is identical, but this is better design as the CSS is factored out, or

separated from, the HTML, and allows us to reuse and change code more easily. If

we wanted to center multiple elements, we wouldn’t have to type style="text-

align: center" for all of them, but just put it in one place.

• The best design, though, is with search-3.html 13:

<!DOCTYPE html>

<html>

 <head>

 <link href="search-3.css" rel="stylesheet"/>

 <title>CS50 Search</title>

 </head>

 <body>

 <h1>CS50 Search</h1>

 <form action="https://www.google.com/search" method="get">

 <input name="q" type="text"/>

 <input type="submit" value="CS50 Search"/>

 </form>

 </body>

</html>

The page is cleaned up a bit here, with line 3 containing a <link> tag that links to

another file, search-3.css , that looks like this (rel indicates the relationship

between that file and the current one):

body

{

 text-align: center;

}

The end result will be again the same (as long as we’ve set the correct permissions

with chmod)!

13 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-3.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-3.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-3.html

Week 7, continued

33

• Let’s look now at search-4.html 14 in a browser:

Now we’re getting pretty close to a 1999 (or even 2014) version of Google!

• Let’s glance through the source code (with CSS within the same file for learning

convenience for now):

14 http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-4.html

http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-4.html
http://cdn.cs50.net/2014/fall/lectures/7/w/src7w/search-4.html

Week 7, continued

34

<!DOCTYPE html>

<html>

 <head>

 <style>

 #header

 {

 text-align: center;

 }

 #content

 {

 text-align: center;

 }

 #content input

 {

 margin: 5px;

 }

 #footer

 {

 font-size: smaller;

 font-weight: bold;

 margin: 20px;

 text-align: center;

 }

 </style>

 <title>CS50 Search</title>

 </head>

 <body>

 <div id="header">

 </div>

 <div id="content">

 <form action="https://www.google.com/search" method="get">

 <input name="q" type="text"/>

 <input type="submit" value="CS50 Search"/>

 </form>

 </div>

 <div id="footer">

 Copyright © CS50

 </div>

 </body>

</html>

Week 7, continued

35

We see some new tags, like <div> in line 42, that just means a new division, or

region of the page. The id="footer" gives it an identifier that is footer in this

case, which we can use elsewhere (like in line 20) to refer to it.

We also see <div id="header"> and <div id="content"> on lines 32 and

35 that divides the page invisibly into three sections, which allow us to change their

styles independently.

Notice that we can set lots of settings for footer that isn’t applied to header or

content , making CSS quite powerful.

• Let’s go to facebook.com and open our Developer Tools:

Week 7, continued

36

• We can right-click a word like Sign and click Inspect Element that bring us directly

to the <h1> tag in the HTML for that word:

Week 7, continued

37

We can actually double-click that element and change the value (at least for us,

locally).

Week 7, continued

38

And the sidebar on the right allows us to do the same:

Week 7, continued

39

• This makes it easier for us to debug and try things on our own webpages, if we want

to create our own.

• We’ll also want to run websites that are completely our own, where the form no longer

asks Google but our own site, with something like this:

...

<form action="search.php" method="get">

 <input name="q" type="text"/>

 <input type="submit" value="CS50 Search"/>

</form>

...

Week 7, continued

40

PHP

• We’ll need to introduce another language, PHP, that you may notice is the ending of

the page search.php . HTML and CSS are just aesthetic languages that allow us to

structure and style a page, but not programming languages with complicated logic.

• PPHP is a scripting language that is lighter-weight than C. It’s an interpreted

language, which means it’s not compiled but executed line by line by an interpreter,

a program that reads each line and does what it says (like Python and Ruby and Perl

and others).

• There are many similaries to C, but some differences include that there’s no main

function anymore, and variables look like this:

$s = "hello, world";

Notice that there’s weak typing, which means variables have types, but we no

longer need to specify them (a blessing and a curse!).

The dollar sign is just PHP syntax for the start of a variable name.

• Apart from that, PHP is quite similar. This is a condition in PHP:

if (condition)

{

 // do this

}

else if (condition)

{

 // do that

}

else

{

 // do this other thing

}

• Boolean expressions:

if (condition || condition)

{

 // do this

}

Week 7, continued

41

if (condition && condition)

{

 // do this

}

• Switches:

switch (expression)

{

 case i:

 // do this

 break;

 case j:

 // do that

 break;

 default:

 // do this other thing

 break;

}

• Loops:

for (initializations; condition; updates)

{

 // do this again and again

}

while (condition)

{

 // do this again and again

}

do

{

 // do this again and again

}

while (condition);

Week 7, continued

42

foreach ($numbers as $number)

{

 // do this with $number

}

That last one is a bit different. It’s a convenient feature whereby, if $numbers is

an array, then $number will give you each element of the array one by one, like

$numbers[$i] , only we didn’t need to set up the variable $i .

• We also tend to pre-initialize arrays in square brackets:

$numbers = [4, 8, 5, 16, 23, 42];

• And we also have associative arrays in PHP, which is like a hash table:

$quote = ["symbol" => "FB", "price" => "79.53"];

• We’ll look at that more closely on Monday, but the takeaway is that lots of languages

will start to abstract away these structures, meaning someone else has created those

features for you, and you can use them in your own programs without having to

implement them all over again.

• We could redo all of our problem sets this semester in PHP, perhaps a bit more easily,

but what we eventually want to do is to write web applications.

• We’ll introduce a new concept, MVC (model-view-controller) that factors code in a way

that many websites tend to use:

Week 7, continued

43

• This might seem overwhelming, but realize that over 90% of all students who take CS50

end up making final projects based on web programming.

	Week 7, continued
	Table of Contents
	Announcements
	HTTP Review
	HTML
	Servers and Permissions
	Links
	Lists, Paragraphs, Tables
	Forms
	CSS
	PHP

