
1

Week 8

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

PHP Basics .. 1

Hash tables ... 6

PHP for the Web .. 10

Forms, sessions, and emails .. 10

MVC with require and functions .. 24

PHP Basics

• Last time we left off with a new language, HTML, that we used to structure and make

webpages.

• We also used Cascading Style Sheets (CSS) to change the colors and positions of

elements.

• Today we’ll start to use a more powerful programming language for the web, PHP.

• One feature that a language needs, in order to dynamically generate webpages, is

simply a print function.

• We’ve had this function in C and Scratch that can generate strings of text, but HTML

is made up of manually written, static text.

• To dynamically generate HTML, we’ll use PHP (and later JavaScript).

• Remember that C is a compiled language, which means we need to assemble it into

object code before we run it. PHP is an interpreted languages, meaning our source

code is provided as input to some program (an interpreter) that understands it and runs

it as-is.

• Let’s open hello 1:

1 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/hello

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/hello
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/hello

Week 8

2

#!/usr/bin/env php

<?php

 printf("hello, world\n");

?>

In line 1, we are telling the operating system to find the interpreter for PHP, wherever

it is.

In line 2, we are writing a PHP start tag that means "this is the beginning of PHP

code."

In line 4, we can write a printf statement that looks suspiciously like C.

And in line 6, we’re simply telling the interpreter, "this is the end of our PHP code."

When we save this file in gedit , it’s smart enough to realize that we’re writing

a PHP file, based on that first line, and syntax-highlights (color-codes) the text

accordingly:

• Remember that we saved this to our home directory, so in our Terminal window we

can try to run it:

jharvard@appliance (~): ./hello

-bash: ./hello: Permission denied

Week 8

3

We get this error, which we’ve gotten before, and know how to fix with chmod , that

changes the mode of a file.

• Let’s allow everyone to execute this file:

jharvard@appliance (~): chmod a+x hello

jharvard@appliance (~): ./hello

hello, world

And now it runs as we expected.

• But notice that we skipped the step of compiling it!

• Let’s open conditions-1 2:

#!/usr/bin/env php

<?php

 // ask user for an integer

 $n = readline("I'd like an integer please: ");

 // analyze user's input

 if ($n > 0)

 {

 printf("You picked a positive number!\n");

 }

 else if ($n == 0)

 {

 printf("You picked zero!\n");

 }

 else

 {

 printf("You picked a negative number!\n");

 }

?>

Notice that we have a few comments, but this looks oddly familiar like a program

we wrote in Week 1, conditions.c .

2 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/conditions-1

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/conditions-1
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/conditions-1

Week 8

4

We ask the user for an integer, and tell them if it’s positive, negative, or zero.

There are two differences with C. One is the $ that is in front of all variables in PHP.

The second is the readline function that we haven’t seen in C, but is basically

the PHP version of GetString .

• Let’s go into our source code directory where we have conditions-1 (which we

saved in our ~/vhosts/ directory for convenience later):

jharvard@appliance (~/vhosts/localhost/public/src8m): ./conditions-1

-bash: ./conditions-1: Permission denied

jharvard@appliance (~/vhosts/localhost/public/src8m): chmod a+x

 conditions-1

jharvard@appliance (~/vhosts/localhost/public/src8m): ./conditions-1

I'd like an integer please: 50

You picked a positive number!

So first we had the same problem of not being able to run it, but we can fix that

quickly with chmod , and now we see conditions-1 runs like we’d expect.

• But notice that the top of the source code again had:

#!/usr/bin/env php

<?php

...

which allows us to create what looks like a C program, but is executed not as compiled

zeroes and ones. It’s passed in to an interpreter that happens to be called php , the

same as the language.

• We can open return 3:

3 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/return

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/return
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/return

Week 8

5

#!/usr/bin/env php

<?php

 $x = 2;

 printf("x is now %d\n", $x);

 printf("Cubing...\n");

 $x = cube($x);

 printf("Cubed!\n");

 printf("x is now %d\n", $x);

 /**

 * Cubes argument.

 */

 function cube($n)

 {

 return $n * $n * $n;

 }

?>

Notice that we’ve defined cube , a function referenced in line 7, in line 14, with no

prototype. PHP (and a lot of modern languages) has a smarter interpreter than C’s

compiler in that it reads in the entire file that’s passed in as input, before deciding

that a function doesn’t exist. So we can call a function and declare it later.

Another difference compared to C is that there’s no need to declare the types of

variables, even though types do exist (as we’ll see later).

There’s also no need to include as many libraries, since PHP includes many more

functions by default.

A final big difference is that there’s no main function, and we can just start writing

code to be executed. This will come in useful shortly when we want many entry

points into our code, spread among multiple URLs and files, not just a single main

function.

Week 8

6

Hash tables

• We glance through the source code of speller4, which is too long to include here,

but the takeaway is that the program is a porting, a manual conversion, or "translation,"

if you will, from C to PHP.

David’s taken care to convert line by line as similarly as possible, if you’re interested

in opening both side-by-side and comparing them to notice differences. (For your

convenience, here’s speller.c 5.)

• But let’s see what we can do now that speller is in PHP. We can start a new file,

dictionary.php , and save it to our Desktop folder for now:

<?php

 function check($word)

 {

 }

 function load($dictionary)

 {

 }

 function size()

 {

 }

 function unload()

 {

 }

?>

4 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mispellings/speller
5 http://cdn.cs50.net/2014/fall/psets/5/pset5/pset5/speller.c

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mispellings/speller
http://cdn.cs50.net/2014/fall/psets/5/pset5/pset5/speller.c
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mispellings/speller
http://cdn.cs50.net/2014/fall/psets/5/pset5/pset5/speller.c

Week 8

7

These four functions were what we wrote in dictionary.c for Problem Set 5, but

now we can rewrite them in PHP. Notice how we declare functions with function ,

and pass in variables not with a type but just the variable name with a $ in front.

• We can declare a hash table in PHP by just adding this:

<?php

 $size = 0;

 $table = [];

 function check($word)

 {

...

Notice that line 5 was all it took to declare a hash table. In line 3, we create a variable

to store the size of the hash table, just like we would in C.

• Now let’s look at what we can do with load :

...

 function load($dictionary)

 {

 global $size;

 gloabl $table;

 foreach(file($dictionary) as $word)

 {

 $table[$word] = true;

 }

 }

...

Notice that we have to start by mentioning the global variables we want to use in

our function (which we didn’t have to in C).

Then we use a new foreach construct. file($dictionary) returns the

dictionary file as an array of strings, which we can iterate over, and refer to each

string as $word .

Week 8

8

With each $word , we set the value in the hash table for that word to be true ,

signifying that it is a valid word.

• Let’s add a few more features to our load function:

...

 function load($dictionary)

 {

 global $size;

 gloabl $table;

 foreach(file($dictionary) as $word)

 {

 $table[chop($word)] = true;

 $size++;

 }

 return true;

 }

...

chop removes the \n in each word (or trailing whitespace more generally), since

each line that is passed in from $dictionary will have a \n that we don’t want

to keep.

We’ll also keep track of the size, and then return true .

• The size function is pretty straightforward:

...

 function size()

 {

 global $size;

 return size;

 }

...

All we have to do is refer to the global variable $size and return it.

• How about check ? We can do this:

Week 8

9

...

 function check($word)

 {

 global $table;

 if (isset($table[strtolower($word)]))

 {

 return true;

 }

 else

 {

 return false;

 }

 }

...

First, we want to have access to the global $table variable. Then, we return

true if our hash table has a value set for $word (after we convert it to lowercase).

Notice that we can simplify this even more by returning the value of our condition,

instead of returning true if our condition is true and false if our condition

is false :

...

 function check($word)

 {

 global $table;

 return isset($table[strtolower($word)]);

 }

...

And this applies in C, too!

• And unload is already done, since we didn’t allocate any memory ourselves! In C,

we’ve had to malloc (and free) memory manually, but PHP manages it for us. One

tradeoff here, however, is the speed of execution. David’s implementation of speller

in C takes 0.38 seconds to run in total, but the PHP version takes 0.93 seconds. This

difference would surely add up, even though the PHP version was faster to implement.

• Another price of PHP is the amount of memory used. If we wanted the most

performance, we’d probably want to avoid PHP. Lots of webservers are actually written

Week 8

10

in C (like the one we’ll make in Problem Set 6) in order to get the most performance

and control over our server.

• Moreover, the hash table in PHP (actually called an associative array) is meant to be

a generic tool, since whoever wrote that doesn’t know what you might want to do with

it, and thus probably has extra features to account for a wide range of situations.

• The conclusion is that there are many tools to use, and the important thing is deciding

on the correct one to use!

PHP for the Web

• So far, we’ve executed PHP files in the command line. But it’s much more common to

use PHP as files ending in .php to generate web content.

Forms, sessions, and emails

• Back in the day, one of David’s first projects was helping improve the freshman

intramurals program. Students had to fill out paper forms (gasp!) and drop them off

with some proctor, who had to keep track manually. These days, we might just use a

Google Form, but in the Olden Days when that didn’t exist, David and his roommate

used a language called Perl to create online forms. And now, we have the glory of

recreating that idea in PHP.

• Expository story aside, let’s take a look at froshims-0.php 6:

6 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-0.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-0.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-0.php

Week 8

11

• Notice that it has a form that allows us to take input from the browser. Last time we

submitted our query parameter to Google, but now we’ll do something else. First, let’s

see what happens when we fill out the form:

Week 8

12

Notice that the URL has changed to register-0.php , and even though the

formatting isn’t very pretty, we see that the values were passed in.

The page has printed what looks like an Array in which these three values were

stored.

But also notice that the URL doesn’t include the queries as strings, like we saw with

Google and /search?q=cats .

• Let’s investigate by opening the source code for froshims-0.php :

Week 8

13

<!DOCTYPE html>

<html>

 <head>

 <title>Frosh IMs</title>

 </head>

 <body style="text-align: center;">

 <h1>Register for Frosh IMs</h1>

 <form action="register-0.php" method="post">

 Name: <input name="name" type="text"/>

 <input name="captain" type="checkbox"/> Captain?

 <input name="gender" type="radio" value="F"/> Female

 <input name="gender" type="radio" value="M"/> Male

 Dorm:

 <select name="dorm">

 <option value=""></option>

 <option value="Apley Court">Apley Court</option>

 <option value="Canaday">Canaday</option>

 <option value="Grays">Grays</option>

 <option value="Greenough">Greenough</option>

 <option value="Hollis">Hollis</option>

 <option value="Holworthy">Holworthy</option>

 <option value="Hurlbut">Hurlbut</option>

 <option value="Lionel">Lionel</option>

 <option value="Matthews">Matthews</option>

 <option value="Mower">Mower</option>

 <option value="Pennypacker">Pennypacker</option>

 <option value="Stoughton">Stoughton</option>

 <option value="Straus">Straus</option>

 <option value="Thayer">Thayer</option>

 <option value="Weld">Weld</option>

 <option value="Wigglesworth">Wigglesworth</option>

 </select>

 <input type="submit" value="Register"/>

 </form>

 </body>

</html>

Week 8

14

• This page is all HTML, with the most interesting part on line 9 that sends the form

information to register-0.php , with the post method. get puts it in the URL,

and post sends it another way. post , then, should be used for information we want

to keep secure, like passwords or credit card information. Photos, too, should probably

be sent with post since it’s not easy to put them in a URL.

• So if we were to look now at register-0.php 7:

<!DOCTYPE html>

<html>

 <head>

 <title>Frosh IMs</title>

 </head>

 <body>

 <pre>

 <?php print_r($_POST); ?>

 </pre>

 </body>

</html>

all it does is print out the $_POST variable. We see that line 9 has a <?php tag,

nested inside a <pre> HTML tag that means "preformatted text," or text we want

monospaced like a typewriter.

print_r is the "print recursive" function that prints everything in its argument.

And inside, we pass in $_POST , which contains everything the browser passed in,

stored for us by PHP.

• Let’s open another example, froshims-1.php8, which looks a little better but is

otherwise the same:

7 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-0.php
8 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-1.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-0.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-1.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-0.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-1.php

Week 8

15

which brings us to:

Week 8

16

• Mysterious. Let’s investigate register-1.php 9:

<?php

 // validate submission

 if (empty($_POST["name"]) || empty($_POST["gender"])

 || empty($_POST["dorm"]))

 {

 header("Location: http://localhost/src8m/froshims/

froshims-1.php");

 exit;

 }

?>

<!DOCTYPE html>

<html>

 <head>

 <title>Frosh IMs</title>

 </head>

 <body>

 You are registered! (Well, not really.)

 </body>

</html>

So there’s more interesting code here, particularly lines 4-8. The comment says that

this chunk of code is validating the submission.

Some variables, including $_POST , are superglobals, variables that are

always accessible in your program.

In this case, we’re indexing into them with words (as though $_POST were

a hash table), passing in a key, or lookup word, in the square bracket,

and it’ll provide us with a value. In line 4, we first try to get the value of

$_POST["name"] , and empty is just a function in PHP that tells us if its

argument is empty or not. The || means "or" just like in C, and so the line as a

whole is just checking that the user gave a name , gender , and dorm . If any

of those are empty, then we send them to froshims-1.php with line 6.

9 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-1.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-1.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-1.php

Week 8

17

If that if condition didn’t evaluate to true (every field has a value), then we

leave PHP mode and return to basic HTML. And this is an important feature of

PHP, where we can open and close the PHP tag to put PHP code anywhere.

After we close the tag, the server will just return whatever text is there, so we get

this ability to comingle code and markup language (for better or worse).

• Let’s check out froshims-3.php 10:

The form looks the same, but when we submit it, we see this:

10 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-3.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-3.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/froshims-3.php

Week 8

18

• And when we check John Harvard’s email, we see this:

The real frosh IMs program would just email the proctor in

charge the form information, but here we’ve programmed it to email

jharvard@cs50.harvard.edu so we can see what happens.

• Let’s look at the source for register-3.php 11:

11 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-3.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-3.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/froshims/register-3.php

Week 8

19

<?php

 // require PHPMailer

 require("libphp-phpmailer/class.phpmailer.php");

 // validate submission

 if (!empty($_POST["name"]) && !empty($_POST["gender"])

 && !empty($_POST["dorm"]))

 {

 // instantiate mailer

 $mail = new PHPMailer();

 // use SMTP

 $mail->IsSMTP();

 $mail->Host = "smtp.fas.harvard.edu";

 $mail->Port = 587;

 $mail->SMTPSecure = "tls";

 // set From:

 $mail->SetFrom("jharvard@cs50.harvard.edu");

 // set To:

 $mail->AddAddress("jharvard@cs50.harvard.edu");

 // set Subject:

 $mail->Subject = "registration";

 // set body

 $mail->Body =

 "This person just registered:\n\n" .

 "Name: " . $_POST["name"] . "\n" .

 "Captain: " . $_POST["captain"] . "\n" .

 "Gender: " . $_POST["gender"] . "\n" .

 "Dorm: " . $_POST["dorm"];

 // send mail

 if ($mail->Send() == false)

 {

 die($mail->ErrInfo); 11

 }

 }

 else

 {

 header("Location: http://localhost/src8m/froshims/

froshims-3.php"); 12

 exit;

 }

?>

<!DOCTYPE html>

<html>

 <head>

 <title>Frosh IMs</title>

 </head>

 <body>

 You are registered! (Really.) 13

 </body>

</html>

Week 8

20

We start by opening the <?php tag, and then requiring a special library called

phpmailer in line 4, like how we might include one in C.

Then we validate the submission, and if none of the fields are empty, we "instantiate

mailer" in line 9, which is just asking for a new PHPMailer , which is an object,

that we put into $mail .

In lines 13-16, we set the protocol for sending our email to SMTP, the host to

Harvard’s servers, the port to 587, and adding security with TLS, a protocol for

securing communication with those servers. (We figured all this out by asking HUIT’s

help desk.)

But then in line 19, it looks like we can send email from anyone to anyone, followed

by a subject and a body of the email.

In PHP, the dot (.) operator allows us to concatenate strings (put strings together),

as we do in lines 29-33, since we’re mixing variables with text.

Finally, in line 36, we try to send the email by calling the send function with $mail-

>Send() , and, if that doesn’t work for some reason, die with an error (no, seriously)

in line 38.

Otherwise, if we didn’t meet the condition that all input was not empty (looking back

up to line 7), then we send the user back to froshims-3.php in line 43, which

is our original registration form.

If everything went successfully, though, we’d get to line 55, "You are registered!

(Really.)", which is what we saw at the beginning of this example.

• This would be how, with real websites or final projects, you might email users with

password reminders or new messages.

• And we see that this allows us to forge emails fairly easily, but at the same time those

emails can still be traced back to us.

• In PHP, there are many superglobal variables, including:

$_COOKIE

$_GET

$_POST

$_SERVER

$_SESSION

Week 8

21

…

• We’ve seen one, $_POST, and similarly $_GET is where the stuff from the URL is

stored for us.

• Let’s look at $_SESSION, which is interesting because we can save the state of our

browsing session. So far, we’ve accessed webpages and clicked around, but HTTP

is stateless in that once that we finish loading the page, the connection closes. Other

applications, like Skype, FaceTime, and Gchat maintain a constant connection, and

we’ll see how we can do that too eventually.

• Let’s look at counter.php 12:

• If we click refresh, we get:

• And we can keep going:

…

12 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php

Week 8

22

…

So somehow the page knows how many times we’ve been there, even though the

page finishes loading and the connection is closed.

• Let’s go into the source code of counter.php 13 to see how this works:

13 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php

Week 8

23

<?php

 // enable sessions

 session_start();

 // check counter

 if (isset($_SESSION["counter"]))

 {

 $counter = $_SESSION["counter"];

 }

 else

 {

 $counter = 0;

 }

 // increment counter

 $_SESSION["counter"] = $counter + 1;

?>

<!DOCTYPE html>

<html>

 <head>

 <title>counter</title>

 </head>

 <body>

 You have visited this site <?= $counter ?> time(s).

 </body>

</html>

It looks like we’re calling a function, session_start() , in line 4, which does what

it says, start our session, which really means that we’re creating a shopping cart, or

bucket, that we can store values in and get again later when the user comes back.

(Technically, this "bucket" is stored as a cookie in the user’s browser, so if they clear

their cookies, we won’t have the values anymore.)

So in line 7, we check if the value for counter is set in $_SESSION , and if it is,

set $counter , our local variable, to it. Otherwise, we set it to 0.

Week 8

24

Then we increment the value of $counter , and put it back in our shopping cart

(i.e., $_SESSION superglobal). (Remember that $_SESSION , like $_POST , is like

a hash table — an associative array that we can index into using words.)

• So $_SESSION is going to be important in any website that has features like

remembering if you’re logged in, or if you’ve put something in your literal shopping cart

to buy, or remember other information that’s pending.

• Even though HTTP doesn’t maintain a constant connection or state, PHP allows us

this illusion.

• As an aside, froshims-1.php looked a bit less ugly because the source code

includes Bootstrap, one of many CSS libraries on the Internet, that contains lots of

styles prewritten by someone (or likely someones) that we can use to make our page

pretty:

<!DOCTYPE html>

<html>

 <head>

 <link href="bootstrap/css/bootstrap.min.css" rel="stylesheet"/>

 <title>Frosh IMs</title>

 </head>

...

MVC with require and functions

• Let’s do a little better in design. We can open mvc/0 14:

14 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/

Week 8

25

This looks like version 0 of CS50’s website, with links to Lectures and the Syllabus

in what looks like an unordered list (). We can right click the page and View

Source to confirm such:

• And if we go back and click on a few links, this is what happens:

Week 8

26

Week 8

27

So it looks like the Lectures page links to each week (although we only have 0 and

1 for now) and each week has a link for the slides for each day.

• Let’s look at its implementation. We can open the directory mvc/0 in gedit , and

before we choose a file to edit, notice this:

Week 8

28

There’s a README file that probably has an explanation of the code, index.php ,

which is what webservers usually use as the default page if no URL is specified.

Earlier, we just visited http://localhost/src8m/mvc/0/ , and our server just

knew to return index.php by convention.

• If we look at the source code of index.php 15, we see that it’s all hardcoded HTML:

<!DOCTYPE html>

<html>

 <head>

 <title>CS50</title>

 </head>

 <body>

 <h1>CS50</h1>

 Lectures

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/w/

syllabus/syllabus.html">Syllabus

 </body>

</html>

15 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/index.php

http://localhost/src8m/mvc/0/
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/index.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/index.php

Week 8

29

• The other files, like week1.php 16, are also just HTML:

<!DOCTYPE html>

<html>

 <head>

 <title>Week 1</title>

 </head>

 <body>

 <h1>Week 1</h1>

 <a href="http://cdn.cs50.net/2014/fall/lectures/1/m/

week1m.pdf">Monday

 <a href="http://cdn.cs50.net/2014/fall/lectures/1/w/

week1w.pdf">Wednesday

 </body>

</html>

• Notice how redundant the code for week0.php 17 is:

<!DOCTYPE html>

<html>

 <head>

 <title>Week 0</title>

 </head>

 <body>

 <h1>Week 0</h1>

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/w/

week0w.pdf">Wednesday

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/f/

week0f.pdf">Friday

 </body>

</html>

• These files are basically the same, so we can try do better. mvc/1 has a few more files:

16 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/week1.php
17 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/week0.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/week1.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/week0.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/week1.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/0/week0.php

Week 8

30

If we look back at index.php from mvc/0 , we notice that there are many parts

that are reused in all our files:

<!DOCTYPE html>

<html>

 <head>

 <title>CS50</title>

 </head>

 <body>

 <h1>CS50</h1>

 Lectures

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/w/

syllabus/syllabus.html">Syllabus

 </body>

</html>

For example, lines 1-9 would probably be almost identical, apart from the parts that

say CS50 .

And lines 12-14 are probably also the same, with lines 10 and 11 being the only

main differences.

Week 8

31

• In version 1 of this example, index.php 18:

<?php require("header.php"); ?>

 Lectures

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/w/syllabus/

syllabus.html">Syllabus

<?php require("footer.php"); ?>

It looks a bit more complicated before, but all it does is replace some of the repeated

lines earlier with line 1 and line 8. (We left the lines with there in case some

pages didn’t have a list.)

require is like #include in C, where the files are effectively copied and pasted

in that location. So we can see that header.php19 contains the header of our

page:

<!DOCTYPE html>

<html>

 <head>

 <title>CS50</title>

 </head>

 <body>

 <h1>CS50</h1>

And footer.php 20 just contains the footer, the bottom, of our page:

 </body>

</html>

• Since index.php is the file that’s changing, we took those common lines out. But we

can do even better (!) with version 2, whose directory looks like this:

18 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/index.php
19 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/header.php
20 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/footer.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/index.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/header.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/footer.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/index.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/header.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/1/footer.php

Week 8

32

• There’s a new file called helpers.php , but let’s look at index.php 21 first:

<?php require("helpers.php"); ?>

<?php renderHeader(["title" => "CS50"]); ?>

 Lectures

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/w/syllabus/

syllabus.html">Syllabus

<?php renderFooter(); ?>

21 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/2/index.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/2/index.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/2/index.php

Week 8

33

Now we’re requiring some helpers.php file, which, like helpers.c from

Problem 3, is where we place helper functions.

Line 3 looks a little different, which looks like it’s calling a function called

renderHeader and passing, inside its parentheses, square brackets that

represent an associative array. In C, we had to pass in the same number of

arguments in the same order to functions every time, but now we can pass in any

number of key-value pairs in any order. title is the name of an argument and

CS50 is its value. We can go into helpers.php and see how this is handled.

• helpers.php 22:

<?php

 /**

 * Renders footer.

 */

 function renderFooter($data = [])

 {

 extract($data);

 require("footer.php");

 }

 /**

 * Renders header.

 */

 function renderHeader($data = [])

 {

 extract($data);

 require("header.php");

 }

?>

In line 6, we define a function by simply stating function , with no need to declare

a return type, and ($data = []) means that our function renderFooter takes

an associative array as an argument named $data , and if one isn’t passed in, we

assume it’s = [] , an empty array (a feature that C doesn’t have).

22 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/2/helpers.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/2/helpers.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/2/helpers.php

Week 8

34

In line 8, extract just takes the keys in $data and creates variables from them.

So in index.php we passed in ["title" # "CS50"] , and in helpers.php ,

renderHeader extracts that data and requires header.php , which now looks

like:

<!DOCTYPE html>

<html>

 <head>

 <title><?= htmlspecialchars($title) ?></title>

 </head>

 <body>

 <h1><?= htmlspecialchars($title) ?></h1>

Now we don’t have hardcoded titles, but rather htmlspecialchars($title) ,

which takes whatever we passed in with the key title and cleans away

characters like < and > that might break the site by closing or opening tags, if they

were printed as-is. (Or even worse, run scripts that alert or redirect the user.)

Notice too that this time our code is starting with <?= instead of <?php , which is

shorthand for <?php echo , or print with PHP, whatever is inside those tags.

As an aside, scripts (which we’ll learn more about later) can be run like this. Set

index.php to pass in something like this:

<?php require("helpers.php"); ?>

<?php renderHeader(["title" => "<script>alert('hello, world!!!!!');</

script>"]); ?>

...

And if helpers.php doesn’t call htmlspecialchars to clean up $title :

Week 8

35

<!DOCTYPE html>

<html>

 <head>

 <title><?= $title ?></title>

 </head>

 <body>

 <h1><?= $title ?></h1>

Then we are literally printing the script into our page, which does this:

So our best bet is to always remember to call htmlspecialchars .

• Let’s open index.php23 in mvc/3 where we simplified the render function even

more:

<?php require("helpers.php"); ?>

<?php render("header", ["title" => "CS50"]); ?>

 Lectures

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/w/syllabus/

syllabus.html">Syllabus

<?php render("footer"); ?>

23 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/3/index.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/3/index.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/3/index.php

Week 8

36

We realized that renderHeader and renderFooter were almost identical

functions, so we combined them into one function, render , that takes another

argument, the name of the template, or file to render, and optionally some key-value

pairs (which we want for the header but not the footer).

• To make this work, helpers.php 24 looks like this now:

<?php

 /**

 * Renders template.

 */

 function render($template, $data = [])

 {

 $path = $template . ".php";

 if (file_exists($path))

 {

 extract($data);

 require($path);

 }

 }

?>

It’s a bit more complex, since we take the first argument, $template , and look for

the file we want to use, instead of hardcoding it, but otherwise works the same way.

• In index.php 25 in mvc/4 , we get even fancier with this:

24 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/3/helpers.php
25 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/4/index.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/3/helpers.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/4/index.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/3/helpers.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/4/index.php

Week 8

37

<?php require("includes/helpers.php"); ?>

<?php render("header", ["title" => "CS50"]); ?>

 Lectures

 <a href="http://cdn.cs50.net/2014/fall/lectures/0/w/syllabus/

syllabus.html">Syllabus

<?php render("footer"); ?>

We’ve kept everything else the same, but moved helpers.php to a folder called

includes , and updated line 1 to call the file in that directory now.

• If we open that folder in gedit , we see that we’ve gotten rid of the extra files and

moved them to includes and templates :

header.php and footer.php live in templates now, another step toward

better design. Instead of mixing together HTML and CSS and PHP, which is hard to

maintain, we want to factor out as much as we can, just like how we had separate

functions and even files in C.

• In mvc/5 , we’ve moved the rest of the files to a public folder:

Week 8

38

• And the first line of index.php 26 in the public folder looks like:

<?php require("../includes/helpers.php"); ?>

We can use .. to access the parent directory, since index.php is in public

and we need to go up one level.

• We’ve structured the site like this to organize them better, and will also help us increase

security more easily.

• Let’s look at this picture from last time:

26 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/5/index.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/5/index.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/mvc/5/index.php

Week 8

39

We’ll put our programming logic, the brains of our website, into files that we’ll start

calling controllers. We’ll have views, like templates, that has the aesthetics - taking

the data and formatting them with color and layout. Finally, we’ll eventually get to

the model, databases that we can store and retrieve data from.

• We’ll do that next time with yet another new language, SQL (read as "sequel").

	Week 8
	Table of Contents
	PHP Basics
	Hash tables

	PHP for the Web
	Forms, sessions, and emails
	MVC with require and functions

