
1

Week 9

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Texting, fixed! ... 1

Announcements .. 5

News ... 7

SQL .. 9

JavaScript ... 12

Texting, fixed!

• Today we’ll wrap up PHP and SQL from last time, talk a little about security, and then

introduce a client-side programming language called JavaScript.

• Last Wednesday, we left off with a buggy PHP program that was supposed to iterate

over the rows of names and numbers in our database and send out text messages.

As he was trying to fix it in lecture, he got several texts from friendly students that

read "Hi! It’s Margot!", "You got this, David!", "We believe in you!", "Nearly there!",

and best of all, "you’re blowing it!!!!" And later, by watching the livestream, someone

even sent "Hello from London, England!"

• So David’s been debugging his code (using up all 5 of his late days at once, even

though that’s against the rules).

• One change he’s made is to the users table, changing the type of carrier from

VARCHAR to enum :

Week 9

2

enum is a type found also in C, where you can enumerate a bunch of constants

and assign them values without hardcoding numbers. In SQL you can do the same,

and in this case we are specifying which four strings the carrier field can be.

• David also figured out how to get email working, since sending emails to certain address

set up by carriers will be sent to phones as text messages. And now if he puts his name

into the form, it works.

• Let’s take a look at the source code in src9m/php1, in particular public/

index.php 2:

<?php

 // configuration

 require("../includes/config.php");

 // render portfolio

 render("form.php");

?>

• It looks like all we’re doing here is rendering form.php3, located in php/

templates :

1 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/
2 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/public/index.php
3 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/templates/form.php

http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/public/index.php
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/public/index.php
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/templates/form.php
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/public/index.php
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/templates/form.php

Week 9

3

<h1>Here?</h1>

<form action="here.php" method="post">

 <input name="name" placeholder="Name" type="text"/>

 <input name="number" placeholder="Phone Number" type="text"/>

 <select name="carrier">

 <option value=""></option>

 <option value="AT&T">AT&T</option>

 <option value="Sprint">Sprint</option>

 <option value="T-Mobile">T-Mobile</option>

 <option value="Verizon">Verizon</option>

 </select>

 <input type="submit" value="Here!"/>

</form>

This form submits to a file called here.php with the POST method, and uses a

select menu to allow you to choose from the four option s.

• here.php 4, meanwhile, looks like this:

4 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/public/here.php

http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/public/here.php
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/public/here.php

Week 9

4

<?php

 require("../includes/config.php");

 // ensure user has provided name

 if (empty($_POST["name"]))

 {

 apologize("Missing name!");

 }

 // ensure user has provided number

 if (empty($_POST["number"]))

 {

 apologize("Missing number!");

 }

 // ensure user has provided carrier

 if (empty($_POST["carrier"]))

 {

 apologize("Missing carrier!");

 }

 // remove non-digits from number

 $number = preg_replace("/[^\d]/", "", $_POST["number"]);

 // ensure number is 10 digits

 if (strlen($number) != 10)

 {

 apologize("Invalid number!");

 }

 // text user

 if (text($number, $_POST["carrier"], "so glad you're here,

 {$_POST["name"]}! lol"))

 {

 render("success.php", ["name" => $_POST["name"]]);

 }

 else

 {

 apologize("Could not text you!");

 }

?>

Week 9

5

There’s a lot of error checking, but line 33 is the most important part, calling the

text function to send a text. (And you can check out the new and improved code

in that function in functions.php 5.)

• If you wish to send yourself a text, you can go to http://cs50.harvard.edu/here (David

has since taken down the form, unfortunately).

Though, in lecture, it didn’t work for some people, probably because we tried to send

too many emails through Harvard’s mail servers at once.

Announcements

• RSVP for CS50 lunch this Friday, 11/7, 1:15pm, at http://cs50.harvard.edu/rsvp

• If you are thinking of a concentration or secondary in CS, the SEAS Advising Fair is

this Wednesday, 11/5, 4pm - 5:30pm, in the Maxwell Dworkin lobby. (You can also see

more detail via Facebook6)

• Also, Mark Zuckerberg’s ID on Facebook was actually 4, not 3, because he

used more test accounts. In fact, we can see this information by going to http://

graph.facebook.com/zuck:

{

 "id": "4",

 "first_name": "Mark",

 "gender": "male",

 "last_name": "Zuckerberg",

 "link": "https://www.facebook.com/zuck",

 "locale": "en_US",

 "name": "Mark Zuckerberg",

 "username": "zuck"

}

The format here is JavaScript Object Notation (JSON), returned by Facebook’s

Application Programming Interface (API), which is a fancy way of saying we can

use a program to request this information, which will be returned to us in a machine-

readable format.

5 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/includes/functions.php
6 https://www.facebook.com/events/799663196759849/

http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/includes/functions.php
http://cs50.harvard.edu/here
http://cs50.harvard.edu/rsvp
https://www.facebook.com/events/799663196759849/
https://www.facebook.com/events/799663196759849/
http://graph.facebook.com/zuck
http://graph.facebook.com/zuck
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/php/includes/functions.php
https://www.facebook.com/events/799663196759849/

Week 9

6

• CS50 has its own APIs too:

CS50 Courses API

CS50 Food API

CS50 Maps API

You can query all of these APIs and get back information you can incorporate into

your final projects.

• Speaking of which, these are the milestones for the final project7:

pre-proposal

proposal

status report

CS50 Hackathon

implementation

CS50 Fair

• For some possibilities, CS50 has a full range of hardware you may borrow for your

final project:

Philips hue bulbs

They actually have an API where each bulb is connected wirelessly to a bridge,

which accepts messages like

PUT /api/newdeveloper/lights/1/state HTTP/1.1

{"on":true, "bri":128, "transitiontime":0}

+ which uses a method we haven’t yet seen, PUT , to send text that almost looks

like an array, but is again in JavaScript Object Notation (JSON). One key is on ,

set to true , bri means brightness, set to 128 , and transitiontime is

0 .

To send this message in the Terminal, we can use the curl command:
7 http://cdn.cs50.net/2014/fall/project/project.html

http://cdn.cs50.net/2014/fall/project/project.html
http://cdn.cs50.net/2014/fall/project/project.html

Week 9

7

curl -X PUT -d '{"on":true, "bri":128, "transitiontime":0}'

 "http://10.0.1.3/api/newdeveloper/lights/4/state"

• We’re using the PUT method to send -d , data, in the single quotes, to the

URL that follows, and curl will handle the rest of the headers and protocol

requirements.

We can even change the color or flash them through the API.

Google Glass

Arduino Uno

Tiny computers on a circuit board you can connect things to.

Myo Gesture Control Armband

This just arrived, and this clip from Myo8 shows the future where we can control

our devices with gestures.

Leap Motion Controller

These devices allow you to motion in front of a Mac or PC, as though you had

Xbox Kinect, as shown in this clip9.

…

• So even though we might not know how these devices work at a hardware level, in

accordance with the theme of layering and abstraction, we can simply use software to

talk to them to make something useful and fun.

• Check out the seminars10 that are going on if you want to learn more new things!

News

• Cheng (hey, that’s me!) recently sent in this article, with the headline I’m terrified of my

new TV: Why I’m scared to turn this thing on — and you’d be, too11.8 https://www.youtube.com/watch?v=oWu9TFJjHaM
9 https://www.youtube.com/watch?v=gby6hGZb3ww
10 http://cs50.harvard.edu/seminars
11 http://www.salon.com/2014/10/30/

im_terrified_of_my_new_tv_why_im_scared_to_turn_this_thing_on_and_youd_be_too/

https://www.youtube.com/watch?v=oWu9TFJjHaM
https://www.youtube.com/watch?v=gby6hGZb3ww
http://cs50.harvard.edu/seminars
http://www.salon.com/2014/10/30/im_terrified_of_my_new_tv_why_im_scared_to_turn_this_thing_on_and_youd_be_too/
http://www.salon.com/2014/10/30/im_terrified_of_my_new_tv_why_im_scared_to_turn_this_thing_on_and_youd_be_too/
https://www.youtube.com/watch?v=oWu9TFJjHaM
https://www.youtube.com/watch?v=gby6hGZb3ww
http://cs50.harvard.edu/seminars
http://www.salon.com/2014/10/30/im_terrified_of_my_new_tv_why_im_scared_to_turn_this_thing_on_and_youd_be_too/
http://www.salon.com/2014/10/30/im_terrified_of_my_new_tv_why_im_scared_to_turn_this_thing_on_and_youd_be_too/

Week 9

8

• Now that we’ve learned a bit about HTTP and the web, we can look at articles like these

and understand them a bit better.

• David reads a few excepts, that describe how a smart TV, recently purchased by the

author of the article, has features like streaming multimedia and web browsing, but also

a camera and microphone (for voice recognition) that might be watching and recording

everything you do.

• Another article, from The Daily WTF, titled The Spider of Doom12, describes a

developer named Josh whose content management system (for employees to manage

a website) suddenly lost all of its content. Turns out, Google’s web-crawling spider

followed delete links that a user had copy and pasted into another page, and since

Google’s spider doesn’t accept cookies or JavaScript, the CMS was unable to check

whether it was logged in, or redirect it away.

• So they had URLs that looked like http://pset7/sell.php?symbol=GOOG

(which you might see in Problem Set 7), but implementing these actions through GET

might not be the best idea, since bots, or spiders, might get to those URLs, and sell

the stocks.

• Indeed, the real problem in story about the CMS is that it relied only on cookies and

JavaScript to check for login status, but you (especially in Problem Set 7) should always

check for user logins on the server side, with login.php or the like.

• Finally, realize that applications like Snapchat can never promise that photos can only

last for 5, 10, or however many seconds. (One easy way is to just take a photo with

another phone while you have the photo open.) Screenshots can also be taken, but

at least the application can tell you. But worse yet, recently hundreds of thousands

of Snapchat pics were leaked13 because those users used a third-party website to

save their snaps, and that website was hacked, leading to the leak. (It should also

be noted that Snapchat isn’t sending pictures and messages securely to your phone,

but allowing a third-party website to receive and store them. If you’re interested in

more technical details, see http://kennywithers.com/featured-online-marketing-articles/

the-snappening-snapchat-accounts-hacked/.)

12 http://thedailywtf.com/articles/The_Spider_of_Doom
13 http://www.washingtonpost.com/news/morning-mix/wp/2014/10/13/a-massive-leak-of-private-snapchat-

pics-and-an-era-when-even-disappearing-photos-can-reappear/

http://thedailywtf.com/articles/The_Spider_of_Doom
http://pset7/sell.php?symbol=GOOG
http://www.washingtonpost.com/news/morning-mix/wp/2014/10/13/a-massive-leak-of-private-snapchat-pics-and-an-era-when-even-disappearing-photos-can-reappear/
http://www.washingtonpost.com/news/morning-mix/wp/2014/10/13/a-massive-leak-of-private-snapchat-pics-and-an-era-when-even-disappearing-photos-can-reappear/
http://kennywithers.com/featured-online-marketing-articles/the-snappening-snapchat-accounts-hacked/.
http://kennywithers.com/featured-online-marketing-articles/the-snappening-snapchat-accounts-hacked/.
http://thedailywtf.com/articles/The_Spider_of_Doom
http://www.washingtonpost.com/news/morning-mix/wp/2014/10/13/a-massive-leak-of-private-snapchat-pics-and-an-era-when-even-disappearing-photos-can-reappear/
http://www.washingtonpost.com/news/morning-mix/wp/2014/10/13/a-massive-leak-of-private-snapchat-pics-and-an-era-when-even-disappearing-photos-can-reappear/

Week 9

9

SQL

• Let’s wrap up SQL, with an introduction to a few more things that might not be required

in Problem Set 7, but might come in useful for final projects.

• With MySQL, you have the choice of various storage engines:

InnoDB

MyISAM

Archive

Memory

…

And these are essentially the file systems or formats for how your database will be

stored as.

• The most popular are the first two, InnoDB, and MyISAM. But first, a story (a retold

one from the days when David took CS161, Operating Systems). Suppose you and

your roommate share a fridge, and you both like milk. So you come home one day,

and your roommate is still in class, and you see that there’s no more milk in the fridge.

So you leave for CVS to buy some milk. Meanwhile, your roommate gets home and

realizes that there’s no milk too, and happens to go to the other CVS, and by the time

you both return, you have too much milk. This was because you and your roommate

didn’t communicate with each other (texting didn’t exist back in David’s time, so this

story made more sense then).

• So, in CS terms, we need to lock this resource. Imagine that there’s a variable called

milk with the value 0 , and you don’t want your roommate to check the value of

milk and see 0 before you have a chance to update it to 1 , so you need to lock

that variable until you’re done using it.

• So in Problem Set 7 we give you a line of sample code that looks like this:

INSERT INTO table (id, symbol, shares) VALUES(6, 'FREE', 10)

 ON DUPLICATE KEY UPDATE shares = shares + VALUES(shares)

In this line, if we wanted to buy more shares of a stock called FREE , we need to do

two things at once: check how many shares we have, and update it.

Week 9

10

• By combining them into one line, we ensure that these operations happen together or

not at all (atomicity). Otherwise, an interruption might cause unexpected behavior. For

example, let’s say you’re implementing an ATM for a bank. And you want a feature

where users can transfer money from one account to another, but we don’t want some

scenario where someone can use two ATMs at the same time to deduct some amount

of money, but having that recorded only once. So the SQL you want to use might look

like this:

START TRANSACTION;

UPDATE account SET balance = balance - 100 WHERE account = 2;

UPDATE account SET balance = balance + 100 WHERE account = 1;

COMMIT;

You can call the query function with START TRANSACTION; and then as many

queries as you’d like, and they won’t be completed until you call query with

COMMIT , but then they will be completed together, one after another.

• SQL injection attacks are also a concern. Though the familiar Harvard PIN system

isn’t vulnerable to this attack, we’ll use it for the sake of discussion.

• The PIN login screen looks like this:

Week 9

11

• Suppose that the code, somewhere behind this page, includes bits like this:

$username = $_POST["username"];

$password = $_POST["password"];

query("SELECT * FROM users WHERE username='{$username}' AND

 password='{$password}'");

• First we get the variables $username and $password , and substitute them into our

query, which looks (and is) correct.

• But a user could input something like this: (David changed the PIN field’s usual bullets

to actual text to reveal what the user has typed.)

skroob is the username, but the password field is a bit fishy with 12345' OR

'1' = '1 , especially with the single quotes.

• If we substitute that info into the form, the query will now look like this (note that

skroob has left off single quotes on the outside of his password, assuming that the

code for the query will, which it does):

Week 9

12

$username = $_POST["username"];

$password = $_POST["password"];

query("SELECT * FROM users WHERE username='skroob' AND password='12345' OR

 '1' = '1'");

So now we’re selecting everything from the users table, WHERE username is

skroob AND password is 12345 , OR 1 = 1 . Since 1 = 1 is always true,

every row from the table will be selected.

• If we use ? s with CS50’s query function, instead of substituting the variables directly,

then the single quotes will be escaped:

$username = $_POST["username"];

$password = $_POST["password"];

query("SELECT * FROM users WHERE username=? AND password=?", $username,

 $password);

• So the moral is to always make sure your input is clean (escaped)!

• And now you can understand this xkcd14.

JavaScript

• Now let’s talk about JavaScript. PHP’s syntax is very similar to C’s syntax, and

fortunately JavaScript is pretty similar too.

• In JavaScript, there’s also no main function.

• Conditions look like this:

14 http://xkcd.com/327/

http://xkcd.com/327/
http://xkcd.com/327/

Week 9

13

if (condition)

{

 // do this

}

else if (condition)

{

 // do that

}

else

{

 // do this other thing

}

• Booleans look like this:

if (condition || condition)

{

 // do this

}

if (condition && condition)

{

 // do this

}

• Switches look like this:

Week 9

14

switch (expression)

{

 case i:

 // do this

 break;

 case j:

 // do that

 break;

 default:

 // do this other thing

 break;

}

• Loops look like this:

for (initializations; condition; updates)

{

 // do this again and again

}

while (condition)

{

 // do this again and again

}

do

{

 // do this again and again

}

while (condition);

• Arrays look like this:

var numbers = [4, 8, 15, 16, 23, 42];

Week 9

15

In JavaScript you declare a variable not by a type or $, but by saying var before it,

and that makes JavaScript loosely typed. Variables have types, but you don’t need

to explicitly declare them.

• Strings are declared like this:

var s = "hello, world";

• And objects:

var quote = {symbol: "FB", price: 79.53};

We’ll see more of this, but this is the most common data structure in JavaScript,

since you can associate key-value pairs, just like in PHP’s associative arrays.

• JavaScript is an interpreted language, not compiled, but unlike PHP, it runs on the client

side, in the browser. It’ll be saved on the server, but the browser will download it as

code and execute it on the client’s computer. Here are some event handlers, which

just means that JavaScript can hook into some events on the browser:

onblur

onchange

onclick

onfocus

onkeydown

onkeyup

onload

onmousedown

onmouseup

onmouseout

onmouseover

onmouseup

onresize

onselect

Week 9

16

onsubmit

…

• If we look at the first .js file we request from visiting facebook.com, we can’t really

tell what it does, but see that there is a lot of code:

• In fact, we can see many more .js files in our Networks tab:

Week 9

17

• Even though Facebook is written in a language based on PHP, there is a lot of

JavaScript that controls, say, chatting and live updating of the News Feed.

• Let’s look at today’s source code15, in particular dom-0.html 16:

15 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/
16 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-0.html

http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-0.html
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-0.html

Week 9

18

<!DOCTYPE html>

<html>

 <head>

 <script>

 function greet()

 {

 alert('hello, ' + document.getElementById('name').value +

 '!');

 }

 </script>

 <title>dom-0</title>

 </head>

 <body>

 <form id="demo" onsubmit="greet(); return false;">

 <input id="name" placeholder="Name" type="text"/>

 <input type="submit"/>

 </form>

 </body>

</html>

In line 5, we have a new tag called script inside the head of the page, and inside

it is a function , greet() . As an aside, JavaScript has nothing to do with Java.

In line 9, what our function does is alert the user, by means of a pop-up box,

which you may have seen, and been annoyed by, before. Notice also that we used

single quotes, though they are treated exactly the same as double quotes. + just

concatenates two strings, which PHP has in the form of . . Then we access the

name element (recall the Document Object Model (DOM) that we talked about

before, with the tree of various pieces of an HTML page connected like a tree)

with the document.getElementById syntax. document is a JavaScript global

variable, and you can call one of its methods (like a function inside a variable) by

using the . character. In this case, we’re getting the name tag, and then its value.

Then on line 16 we create a form with an id of demo (which allows us to identify

it with a unique name) and attach an event handler, onsubmit , to it, which will call

the greet function and then return false , when the form is submitted.

Week 9

19

• So the page ends up looking like this:

Remember that we named the field where we put our name name , so greet has

access to it by way of getElementById('name') . And then we said return

false after we called the greet function, which meant the page didn’t refresh

or go anywhere else.

• Let’s look at dom-1.html 17:

17 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-1.html

http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-1.html
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-1.html

Week 9

20

<!DOCTYPE html>

<html>

 <head>

 <title>dom-1</title>

 </head>

 <body>

 <form id="demo">

 <input id="name" placeholder="Name" type="text"/>

 <input type="submit"/>

 </form>

 <script>

 document.getElementById('demo').onsubmit = function() {

 alert('hello, ' + document.getElementById('name').value +

 '!');

 return false;

 };

 </script>

 </body>

</html>

Notice that we’ve moved the script from the head to after the form . Then

we get the demo element, which is the form itself, and now we can set the

onsubmit property (like a data field in a struct in C) to a function. So in

JavaScript (and PHP, and technically C, even though you shouldn’t) you can actually

have anonymous (so-called lambda) functions that don’t have names but can still

be called. So now when the submit button is clicked, the browser will run that

function, because it’s attached to the onsubmit property for the form.

• We can make this look even fancier with a popular library called jQuery, in

dom-2.html 18:

18 http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-2.html

http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-2.html
http://cdn.cs50.net/2014/fall/lectures/9/m/src9m/js/dom-2.html

Week 9

21

<!DOCTYPE html>

<html>

 <head>

 <script src="http://code.jquery.com/jquery-latest.min.js"></

script>

 <script>

 $(document).ready(function() {

 $('#demo').submit(function(event) {

 alert('hello, ' + $('#name').val() + '!');

 event.preventDefault();

 });

 });

 </script>

 <title>dom-2</title>

 </head>

 <body>

 <form id="demo">

 <input id="name" placeholder="Name" type="text"/>

 <input type="submit"/>

 </form>

 </body>

</html>

• On Wednesday we’ll use this library to create web applications that update the page

without refreshing and have other fancy features.

	Week 9
	Table of Contents
	Texting, fixed!
	Announcements
	News
	SQL
	JavaScript

