
1

Week 9, continued

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Demos and News .. 1

Recap ... 2

JavaScript Validation .. 3

Ajax ... 10

Another Demo .. 17

Demos and News

• David starts lecture with the fancy new Myo armband, which wraps around your

forearm, senses your muscle movements, and then sends those movements to a

computer which recognizes them and does things as a result.

• A volunteer, Maria, comes on stage to try the armband, but it has trouble recognizing

her movements. The armband we have is actually the developer kit, and on the bleeding

edge of advanced technology, so bugs like this are to be expected! (But check out this

demo video1 or the Myo’s API2!)

And late Happy Birthday to Maria, whose birthday was yesterday!

• Steve Ballmer '77, who joined Microsoft when it had only 30 employees and retired

recently (with the company employing over 100,000 people!), will join us next

Wednesday, 11/12, as a guest lecturer.

Seats may be limited, so sign up at http://cs50.harvard.edu/register

• A recent article entitled Five Tickets To Compete for UC Presidency, Vice Presidency3

reminded David of his experience running and losing, which then motivated him to work

on his public speaking and teaching skills.

1 http://www.youtube.com/watch?v=aXoDK0EHdzM
2 https://developer.thalmic.com/docs/api_reference/platform/index.html
3 http://www.thecrimson.com/article/2014/11/5/five-tickets-uc-elections/

http://www.youtube.com/watch?v=aXoDK0EHdzM
https://developer.thalmic.com/docs/api_reference/platform/index.html
http://cs50.harvard.edu/register
http://www.thecrimson.com/article/2014/11/5/five-tickets-uc-elections/
http://www.youtube.com/watch?v=aXoDK0EHdzM
https://developer.thalmic.com/docs/api_reference/platform/index.html
http://www.thecrimson.com/article/2014/11/5/five-tickets-uc-elections/

Week 9, continued

2

• Back in the late 90s when David was here campaigning, he actually made a website

that looked like this:

Check out that monk with the curtain that you had to click to see the actual website

… we give you a 0/5 for design, David of the late 90s.

Recap

• HTML is a markup language that lets us structure a webpage (using headers, footers,

headings, etc.).

• CSS lets us design or stylize elements, with boldfacing or colors or positioning. For

example, a default table in HTML is pretty ugly and hard to read, so we can use CSS

to make it prettier.

• PHP lets us generate dynamic content, and since it’s a programming language, we can

use it to communicate with a database or other servers, and do basically anything we

can tell a computer to do.

Week 9, continued

3

• SQL is yet another language, used to talk to databases, with INSERT s, DELETE s,

UPDATE s, and other functionality yet to be explored.

JavaScript Validation

• On Monday we introduced the last language we’ll be formally learning about,

JavaScript. Unlike PHP, which is interpreted on the server, JavaScript runs on the

client-side, or in the browser. These days most websites include a bunch of .js files,

that your browser then runs in a sandbox — i.e., it generally restricts JavaScript from,

say, deleting your files or sending emails.

As an aside, JavaScript can also be run on a server, but we won’t talk about it in

that context.

• Recall the following HTML page and its corresponding tree structure that we talked

about a few weeks ago:

Week 9, continued

4

We think of the Document Object Model (DOM) like this because our JavaScript

interacts with the webpage in your browser based on the relationships shown by

this tree. For example, websites that have a chat feature might implement individual

messages as li elements, or div s, and as you get new messages, they are

being added by some JavaScript function as another node to this tree.

• Let’s look at an example, form-0.html 4:

It looks super simple, with no CSS, and the code is fairly straightforward as well:

4 http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/form-0.html

http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/form-0.html
http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/form-0.html

Week 9, continued

5

<!DOCTYPE html>

<html>

 <head>

 <title>form-0</title>

 </head>

 <body>

 <form action="register.php" method="get">

 Email: <input name="email" type="text"/>

 Password: <input name="password" type="password"/>

 Password

 (again): <input name="confirmation" type="password"/>

 I agree to the terms and

 conditions: <input name="agreement" type="checkbox"/>

 <input type="submit" value="Register"/>

 </form>

 </body>

</html>

We have a form tag that will go to some file called register.php , and then we

have a text field, two password fields, and a checkbox field.

• Now if we fill out the form like this:

• We get:

Week 9, continued

6

• We notice that the URL changed, but we probably should have checked for errors like

the blank password confirmation and the unchecked box. We already learned how to do

this on the server side, but lots of websites now do it on the client side, in the browser,

so you can get instant feedback without refreshing the page.

• Let’s open form-1.html5, which looks the same, but now when we submit an

incomplete form, we get:

This error comes from the alert function in JavaScript, which we use for now but

in general should be avoided since it’s fairly annoying.

Notice that the URL did not change, meaning we didn’t need to ask the server and

waste its time, and the user will also get instant feedback.

• The source code for form-1.html looks like this:

5 http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/form-1.html

http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/form-1.html
http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/form-1.html

Week 9, continued

7

<!DOCTYPE html>

<html>

 <head>

 <title>form-1</title>

 </head>

 <body>

 <form action="register.php" id="registration" method="get">

 Email: <input name="email" type="text"/>

 Password: <input name="password" type="password"/>

 Password (again): <input name="confirmation" type="password"/>

 I agree to the terms and

 conditions: <input name="agreement" type="checkbox"/>

 <input type="submit" value="Register"/>

 </form>

 <script>

 var form = document.getElementById('registration');

 // onsubmit

 form.onsubmit = function() {

 // validate email

 if (form.email.value == '')

 {

 alert('You must provide your email address!');

 return false;

 }

 // validate password

 else if (form.password.value == '')

 {

 alert('You must provide a password!');

 return false;

 }

 // validate confirmation

 else if (form.password.value != form.confirmation.value)

 {

 alert('Passwords do not match!');

 return false;

 }

 // validate agreement

 else if (!form.agreement.checked)

 {

 alert('You must agree to the terms and conditions!');

 return false;

 }

 // valid!

 return true;

 };

 </script>

 </body>

</html>

Week 9, continued

8

Notice that the HTML looks structurally the same, with the same form, but we now

have a script in the second half of the file. (And note that this isn’t the only, or

most elegant, way to implement this, but it’s the most straightforward.)

In line 21 we get the element with ID registration , and store it in

a variable called form so we can use it later easily. We do this with

document.getElementById , which we can think of as a function in JavaScript

that finds the element in the DOM (think of the tree) and returns a pointer to it, so

we can modify it.

In line 24, the syntax looks a bit different than in C, but we can break it down.

On the left side of the = , we have form.onsubmit , which means we’re storing

something into a field called onsubmit of the variable called form , just like how

we might store something into a field into a struct in C. But browsers expect

DOM elements to have a function in the onsubmit field, rather than a value or

string. So on the right side of the = we see function () { , which means that

we’re about to define some anonymous function, and that’s what the onsubmit

field in form will refer to. We can leave this function anonymous because browsers

are programmed to execute whatever function is in onsubmit for a form when the

form is submitted.

Also note that function () { has the opening curly brace on the same line,

whereas in C the curly brace is on the next line. Just a stylistic thing that JavaScript

folks tend to prefer!

And that function will be everything inside the curly braces.

So on line 27, for example, we check whether the value of the email field in

the form is empty, or '' , and if it is, call the alert function to tell the user.

Then return false; will stop the form from being submitted, so the user can

fix the error.

We do the same for both password fields, but then in line 41 we check whether the

two strings are the same, with != . (JavaScript allows us to compare strings like

this directly, unlike C!)

Then in line 48, we check whether the checked field was checked, and if it’s not

(with the !), we tell the user.

Finally, we return true in line 55 to allow the form submission to continue.

Week 9, continued

9

• We could easily do this in PHP after the form is submitted, but remember the whole

point of this is to make responses faster and the user experience better overall. Imagine

if you had to refresh Gmail every time you had a new email, or (God forbid), refresh

the entire Facebook page every time you got a chat message. (Back in the Dark Days

of the Internet when David ran for UC, that’s what the user experience was actually

like … shudder.)

• But just because we are doing this on the client side now, doesn’t mean we should

abandon server-side checking. We want to check for errors in both places, since some

users or (more likely) web crawling bots might have JavaScript disabled, and not

execute the checking code.

• Indeed, we can easily go into Chrome’s Settings, scroll a bit down, and check a single

box to Disable JavaScript:

• And we could also use curl or telnet to send messages to servers that would

certainly not be error-checked.

• So using JavaScript is more for the users' benefit than as an improvement in security

or validation.

• In form-2.html , we implement the same functionality in a slightly different way, with

$(document).ready(function() { , but we’ll explain this method more fully in

a walkthrough in Problem Set 8! And this method uses a popular JavaScript library

called jQuery.

Week 9, continued

10

Ajax

• Let’s look at some cooler applications, using a technique called asynchronous

JavaScript and XML (Ajax), even though these days we tend to use JSON as opposed

to XML. This is how something like Google Maps works.

Back in the day, MapQuest and other sites would have arrows around a small square

map, as links that you’d have to click on to pan the map.

• Nowadays, we can just click and drag our way around. But if we do this fast enough,

we see some small glitches:

These blank squares are tiles that are missing from the map, until the map data

is loaded.

As an aside, Comcast has an online form where you can put in an address and

it tries to autocomplete by filling in the rest of the address. But it starts with

the first character, so as soon as you type in 33 , it will suggest every single

Week 9, continued

11

possible address that starts with 33 . So there are good ways and bad ways to use

JavaScript.

• In any case, we can open the Network tab in Chrome, and as we pan around we see

that lots of GET requests are being made, many of which are image/jpeg files:

So it looks like each tile is getting downloaded and added to the DOM, so the user

can see the updated tile.

• So this is done with Ajax, and this complicated-looking chart has lots of details about

the technique:

Week 9, continued

12

• But we will first try to explain it by example. Let’s open quote.php6, but pass in a

query:

• And this is what we get back:

The braces and quotes remind us of JavaScript code, and indeed this is a JavaScript

object, outputted in JSON.

• JavaScript Object Notation (JSON) is just a way for us to represent data in JavaScript

with key-value pairs. For example, we can define a student as follows:

var student =

{

 id: 1,

 house: "Winthrop House",

 name: "Zamyla Chan"

}

This is like a struct , where we can assign certain values to fields in the same

data structure.

• But we can also have an array of these objects:

6 http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/quote.php

http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/quote.php
http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/quote.php

Week 9, continued

13

var staff = [

 {

 "id": 1,

 "house": "Eliot House",

 "name": "Joseph Ong"

 },

 {

 "id": 2,

 "house": "Winthrop House",

 "name": "R.J. Aquino"

 },

 {

 "id": 3,

 "house": "Mather House",

 "name": "Lucas Freitas"

 }

];

Notice the syntax with the brackets and commas, separating three objects that are

otherwise identical to the one containing Zamyla .

• So having data in this format allows us to easily use it in our programs. Let’s open

ajax-0.html 7, and this is what happens when we type in FREE :

Noice that the URL hasn’t changed, and that we got an alert with the current stock

price for FREE .

• Let’s open ajax-2.html 8, and do the same:
7 http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/ajax-0.html
8 http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/ajax-2.html

http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/ajax-0.html
http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/ajax-2.html
http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/ajax-0.html
http://cdn.cs50.net/2014/fall/lectures/9/w/src9w/ajax-2.html

Week 9, continued

14

• Before we click Get Quote, the "Price:" field is just text that says "to be determined."

And when we do click Get Quote, it looks like the data was dynamically updated on

our page, without the URL changing:

• Let’s open the source code for ajax-2.html :

Week 9, continued

15

<!DOCTYPE html>

<html>

 <head>

 <script src="http://code.jquery.com/jquery-latest.min.js"></

script>

 <script>

 /**

 * Gets a quote via JSON.

 */

 function quote()

 {

 var url = 'quote.php?symbol=' + $('#symbol').val();

 $.getJSON(url, function(data) {

 $('#price').html(data.price);

 });

 }

 </script>

 <title>ajax-2</title>

 </head>

 <body>

 <form onsubmit="quote(); return false;">

 Symbol: <input autocomplete="off" id="symbol" type="text"/>

 Price: to be determined // 26

 <input type="submit" value="Get Quote"/>

 </form>

 </body>

</html>

Let’s start by looking at our HTML form . On line 23, we start our form as usual,

and on line 24 we turn autocomplete off so the browser doesn’t show that

dropdown with everything we’ve ever typed in. That text field is given the id of

symbol .

In line 26 we have something new, a span tag, which we can think of like a p

or div tag, except it’s an inline element, meaning it’ll stay in the same line on the

Week 9, continued

16

page, and not move down. That element is given an id of price , so we can

identify it later.

Now let’s look up towards the top. On line 5, we write a script tag that references

the latest jQuery library so we can use it, just like #include in C or require

in PHP.

Then in line 11 we start our own function, apparently named quote . In line 13,

we create our own string, named url , by putting together the text quote.php?

symbol= (the single quotes create a string) and whatever is in the form field with

ID symbol ($('#symbol').val() is just jQuery syntax for getting that value.

#symbol refers to the DOM element with ID symbol , the $('') around it is

telling jQuery to select it for us to use as an object, and then .val() is just a

method inside this object that we can call to get the value.)

In the beginning of line 14, we have a dollar sign $ by itself, which is equivalent

to saying jQuery , a global variable that the jQuery library gives us, to access

certain methods that aren’t element-specific. (It does not mean the start of a variable

name, like it does in PHP.) So getJSON is a function that does what it sounds

like, getting JSON from a server. It gets it from the URL, which we pass in as the

string that we called url , and a function is called as soon as the browser gets

the data back. Remember that the first A in Ajax stands for asynchronous, and that

just means the browser will send the request to the server, and not have to wait

for a response before doing anything else. function(data) is what we call a

callback function, which means that the function will be automatically called when

the server responds. data , whatever the server responds with, will be passed in

to that function.

Finally, once the server responds, we’ll set the html of #price , the span

element on the page that the user can see, to the value of the price field of data ,

the JSON object that’s returned. Remember that quote.php returns JSON that

looks like this,

Week 9, continued

17

with a price field of 0.15 (The stock’s price must have risen from 0.15 to 0.1515

in the few minutes since that example!). Indeed, we could be even more clear and

format the data like this:

{

 "symbol": "FREE",

 "name": "FreeSeas Inc.",

 "price": 0.15

}

• So lots of moving parts here, but the key takeaway is that, with JavaScript and Ajax,

we can make HTTP requests and change elements on the page, all without having to

reload the entire webpage.

Indeed, these days you can write entire software applications with JavaScript, but

we won’t go into that much.

Another Demo

• Instead, let’s do something fun and demo another device, the Leap Motion. This device

plugs into a USB port and uses infrared beams to detect your gestures when your hand

is held over the device, and then converts that to input.

We demo a few games with David, and then a volunteer, Laura. (Check out some

of Leap Motion’s demo videos9, or their API10!)

• That’s all for today!

9 https://developer.leapmotion.com/gallery
10 https://developer.leapmotion.com/documentation/skeletal/csharp/devguide/Intro_Skeleton_API.html

https://developer.leapmotion.com/gallery
https://developer.leapmotion.com/documentation/skeletal/csharp/devguide/Intro_Skeleton_API.html
https://developer.leapmotion.com/gallery
https://developer.leapmotion.com/documentation/skeletal/csharp/devguide/Intro_Skeleton_API.html

	Week 9, continued
	Table of Contents
	Demos and News
	Recap
	JavaScript Validation
	Ajax
	Another Demo

