
1

Problem Set 1: C

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 2

Recommended Reading ... 2

Academic Honesty ... 2

Reasonable ... 3

Not Reasonable .. 3

Assessment .. 4

Getting Started ... 5

Installing .. 5

Updating .. 6

Dropboxing .. 6

File Manager ... 7

gedit ... 7

Hello, C .. 10

CS50 Check ... 13

CS50 Style ... 15

Shorts ... 15

Hello again, C .. 16

Itsa Mario ... 16

Time for Change .. 19

How to Submit ... 22

Step 1 of 2 .. 22

Step 2 of 2 .. 23

Questions? Head to cs50.harvard.edu/discuss1 or join classmates at office hours2!

1 https://cs50.harvard.edu/discuss
2 https://cs50.harvard.edu/hours

https://cs50.harvard.edu/discuss
https://cs50.harvard.edu/hours
https://cs50.harvard.edu/discuss
https://cs50.harvard.edu/hours

Problem Set 1: C

2

Objectives

• Get comfortable with Linux.

• Start thinking more carefully.

• Solve some problems in C.

Recommended Reading

• Pages 1 – 7, 9, and 10 of http://www.howstuffworks.com/c.htm.

• Chapters 1 – 5, 9, and 11 – 17 of Absolute Beginner’s Guide to C.

• Chapters 1 – 6 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter to the Administrative Board and the outcome is Admonish, Probation, Requirement

to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local

sanctions on top of that outcome that may include an unsatisfactory or failing grade for

work submitted or for the course itself.

http://www.howstuffworks.com/c.htm

Problem Set 1: C

3

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

to the Administrative Board.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

Problem Set 1: C

4

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Problem Set 1: C

5

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily

submit this and all other problem sets to be eligible for a satisfactory grade unless granted

an exception in writing by the course’s heads.

Getting Started

Recall that the CS50 Appliance is a "virtual machine" (running an operating system called

Ubuntu, which itself is a flavor of Linux) that you can run inside of a window on your own

computer, whether you run Windows, Mac OS, or even Linux itself. To do so, all you need

is a "hypervisor" (otherwise known as a "virtual machine monitor"), software that tricks the

appliance into thinking that it’s running on "bare metal."

Alternatively, you could buy a new computer, install Ubuntu on it (i.e., bare metal), and

use that! But a hypervisor lets you do all that for free with whatever computer you already

have. Plus, the CS50 Appliance is pre-configured for CS50, so, as soon as you install it,

you can hit the ground running.

Installing

So let’s get a hypervisor and the CS50 Appliance installed on your computer. Head

to https://manual.cs50.net/appliance/2014/#how_to_install_appliance, where instructions

await. In particular, if running Mac OS, follow the instructions for VMware Fusion. If running

Windows or Linux, follow the instructions for VMware Workstation. Be sure to download

version 2014 of the CS50 Appliance, not 19 or earlier.

https://manual.cs50.net/appliance/2014/#how_to_install_appliance

Problem Set 1: C

6

Updating

Once you have the CS50 Appliance installed, go ahead and start it (per those same

instructions). A small window should open, inside of which the appliance should boot. A

few seconds or minutes later, you should find yourself logged in as John Harvard (whose

username is jharvard and whose password is crimson), with John Harvard’s desktop

before you.

If you find that the appliance runs unbearably slow on your PC, particularly if several

years old or a somewhat slow netbook, or if you see a hint about "long mode," try

the instructions at https://manual.cs50.net/virtualization and let us know if you still

need a hand.

Feel free to poke around, particularly the 50 Menu in the appliance’s bottom-left corner.

You should find the graphical user interface (GUI), called Xfce, reminiscent of both Mac

OS and Windows. Linux actually comes with a bunch of GUIs; Xfce is just one. If you’re

already familiar with Linux, you’re welcome to install other software via apt-get , but

the appliance should have everything you need for now. You’re also welcome to play

with the appliance’s various features, per the instructions at https://manual.cs50.net/

appliance/2014/#how_to_use_appliance, but this problem set will explicitly mention

anything that you need know or do.

Even if you just downloaded the appliance, ensure that it’s completely up-to-date by

opening a terminal window, as via Menu > Accessories > Terminal Emulator, typing

update50

and then hitting Enter on your keyboard. So long as your computer (and, thus, the

appliance) has Internet access, the appliance should proceed to download and install any

available updates.

Dropboxing

Next, follow the instructions at https://manual.cs50.net/appliance/2014/

#how_to_enable_dropbox to configure the appliance to use Dropbox so that your work is

automatically backed up, just in case something goes wrong with your appliance. (If you

really don’t want to use Dropbox, that’s fine, but realize your files won’t be backed up as

https://manual.cs50.net/virtualization
https://manual.cs50.net/appliance/2014/#how_to_use_appliance
https://manual.cs50.net/appliance/2014/#how_to_use_appliance
https://manual.cs50.net/appliance/2014/#how_to_enable_dropbox
https://manual.cs50.net/appliance/2014/#how_to_enable_dropbox

Problem Set 1: C

7

a result!) If you don’t yet have a Dropbox account, sign up when prompted for the free (2

GB) plan. You’re welcome to install Dropbox on your own computer as well (outside of

the appliance), per https://www.dropbox.com/install, but no need if you’d rather not; just

inside the appliance is fine.

If you’re already a Dropbox user but don’t want your personal files to be synched into the

appliance, simply enable Selective Sync, per the CS50 Manual’s instructions.

Incidentally, if curious how Dropbox itself works, allow us to introduce Thomas Carriero

'08 and Alex Allain '06, both former CS50 TFs!

https://www.youtube.com/watch?v=VECV6r9s5SE

File Manager

Okay, let’s create a folder (otherwise known as a "directory") in which your code for this

problem set will soon live. Go ahead and double-click Home on John Harvard’s desktop

(toward the appliance’s top-left corner). A window entitled jharvard - File Manager should

appear, indicating that you’re inside of John Harvard’s "home directory" (i.e., personal

folder). Then double-click the folder called Dropbox, at which point the window’s title

should change to Dropbox - File Manager. Next select File > Create Folder… in the

window’s top-left corner, input a name of pset1, and then click Create. (If you misname

the folder, control-click the misnamed folder, select Rename…, enter a new name, and

click Rename.) Then double-click that pset1 folder to open it. The window’s title should

change to pset1 - File Manager, and you should see an otherwise empty folder (since

you just created it).

gedit

Okay, go ahead and close any open windows, then select Menu > Accessories > gedit.

(Recall that Menu is in the appliance’s bottom-left corner.) A window entitled Untitled

Document 1 - gedit should appear, inside of which is a tab entitled Untitled Document

1. Clearly the document is just begging to be saved. Go ahead and type hello (or

the ever-popular asdf) on line 1 of the document, and then notice how the tab’s name

is now prefixed with an asterisk (*), indicating that you’ve made changes since the file

was first opened. Select File > Save, and a window entitled Save As should appear.

Input hello.txt next to Name, then click Home under Places. You should then see

the contents of John Harvard’s home directory. Double-click Dropbox, then double-click

https://www.dropbox.com/install
https://www.youtube.com/watch?v=VECV6r9s5SE

Problem Set 1: C

8

pset1, and you should find yourself inside that empty folder you created. Now, at the

bottom of this same window, you should see that the file’s default Character Encoding is

Unicode (UTF-8) and that the file’s default Line Ending is Unix/Linux. No need to change

either; just notice they’re there. That the file’s Line Ending is Unix/Linux just means that

gedit will insert (invisibly) \n at the end of any line of text that you type. Windows, by

contrast, uses \r\n , and Mac OS uses \r , but more on those (delightfully annoying)

details some other time.

Okay, click Save in the window’s bottom-right corner. The window should close, and you

should see that the original window’s title is now hello.txt (~/Dropbox/pset1) - gedit. The

parenthetical just means that hello.txt is inside of pset1, which is inside of Dropbox, which

is inside of ~, which is shorthand notation for John Harvard’s home directory. A useful

reminder is all. The tab, meanwhile, should now be entitled hello.txt (with no asterisk,

unless you accidentally hit the keyboard again).

Okay, with hello.txt still open in gedit , notice that beneath your document is a

"terminal window" (aka "terminal emulator"), a command-line (i.e., text-based) interface

via which you can navigate the appliance’s hard drive and run programs (by typing their

name). Notice that the window’s "prompt" is

jharvard@appliance (~):

which means that you are logged into the appliance as John Harvard and that you are

currently inside of ~ (i.e., John Harvard’s home directory). If that’s the case, there should

be a Dropbox directory somewhere inside. Let’s confirm as much.

Click somewhere inside of that terminal window, and the prompt should start to blink. Type

ls

and then Enter. That’s a lowercase L and a lowercase S, which is shorthand notation

for "list." Indeed, you should then see a list of the folders inside of John Harvard’s home

directory, among which is Dropbox! Let’s open that folder, followed immediately by the

pset1 folder therein. Type

cd Dropbox/pset1

Problem Set 1: C

9

or even

cd ~/Dropbox/pset1

followed by Enter to change your directory to ~/Dropbox/pset1 (ergo, cd). You should

find that your prompt changes to

jharvard@appliance (~/Dropbox/pset1):

confirming that you are indeed now inside of ~/Dropbox/pset1 (i.e., a directory called

pset1 inside of a directory called Dropbox inside of John Harvard’s home directory). Now

type

ls

followed by Enter. You should see hello.txt! Now, you can’t click or double-click on that

file’s name there; it’s just text. But that listing does confirm that hello.txt is where we hoped

it would be.

Let’s poke around a bit more. Go ahead and type

cd

and then Enter. If you don’t provide cd with a "command-line argument" (i.e., a directory’s

name), it whisks you back to your home directory by default. Indeed, your prompt should

now be:

jharvard@appliance (~):

Phew, home sweet home. Make sense? If not, no worries; it soon will! It’s in this terminal

window that you’ll soon be compiling your first program! For now, though, close gedit

(via File > Quit) and, with it, hello.txt.

Incidentally, if the need arises, know that you can transfer files to and

from the appliance per the instructions at https://manual.cs50.net/appliance/2014/

#how_transfer_files_between_appliance_and_your_computer.

https://manual.cs50.net/appliance/2014/#how_transfer_files_between_appliance_and_your_computer
https://manual.cs50.net/appliance/2014/#how_transfer_files_between_appliance_and_your_computer

Problem Set 1: C

10

Hello, C

First, a hello from Zamyla if you’d like a tour of what’s to come, particularly if less

comfortable. Note that her version of the CS50 Appliance might look a bit different from

yours, but not a problem.

https://www.youtube.com/watch?v=HkQD6aw7oDc

Shall we have you write your first program? Go ahead and launch gedit . (Remember

how?) You should find yourself faced with another Unsaved Document 1. Go ahead and

save the file as hello.c (not hello.txt) inside of pset1 , just as before. (Remember

how?) Once the file is saved, the window’s title should change to hello.c (~/Dropbox/

pset1) - gedit, and the tab’s title should change to hello.c. (If either does not, best to close

gedit and start fresh! Or ask for help!)

Go ahead and write your first program by typing these lines into the file (though you’re

welcome to change the words between quotes to whatever you’d like):

#include <stdio.h>

int main(void)

{

 printf("hello, world\n");

}

Notice how gedit adds "syntax highlighting" (i.e., color) as you type. Those colors aren’t

actually saved inside of the file itself; they’re just added by gedit to make certain syntax

stand out. Had you not saved the file as hello.c from the start, gedit wouldn’t know

(per the filename’s extension) that you’re writing C code, in which case those colors would

be absent.

Do be sure that you type in this program just right, else you’re about to experience your

first bug! In particular, capitalization matters, so don’t accidentally capitalize words (unless

they’re between those two quotes). And don’t overlook that one semicolon. C is quite

nitpicky!

When done typing, select File > Save (or hit ctrl-s), but don’t quit. Recall that the leading

asterisk in the tab’s name should then disappear. Click anywhere in the terminal window

https://www.youtube.com/watch?v=HkQD6aw7oDc

Problem Set 1: C

11

beneath your code, and its prompt should start blinking. But odds are the prompt itself

is just

jharvard@appliance (~):

which means that, so far as the terminal window’s concerned, you’re still inside of John

Harvard’s home directory, even though you saved the program you just wrote inside of

~/Dropbox/pset1 (per the top of gedit 's window). No problem, go ahead and type

cd Dropbox/pset1

or

cd ~/Dropbox/pset1

at the prompt, and the prompt should change to

jharvard@appliance (~/Dropbox/pset1):

in which case you’re where you should be! Let’s confirm that hello.c is there. Type

ls

at the prompt followed by Enter, and you should see both hello.c and hello.txt ?

If not, no worries; you probably just missed a small step. Best to restart these past several

steps or ask for help!

Assuming you indeed see hello.c , let’s try to compile! Cross your fingers and then type

make hello

at the prompt, followed by Enter. (Well, maybe don’t cross your fingers whilst typing.) To

be clear, type only hello here, not hello.c . If all that you see is another, identical

prompt, that means it worked! Your source code has been translated to object code (0s

and 1s) that you can now execute. Type

Problem Set 1: C

12

./hello

at your prompt, followed by Enter, and you should see whatever message you wrote

between quotes in your code! Indeed, if you type

ls

followed by Enter, you should see a new file, hello , alongside hello.c and

hello.txt .

If, though, upon running make , you instead see some error(s), it’s time to debug! (If the

terminal window’s too small to see everything, click and drag its top border upward to

increase its height.) If you see an error like expected declaration or something no less

mysterious, odds are you made a syntax error (i.e., typo) by omitting some character or

adding something in the wrong place. Scour your code for any differences vis-à-vis the

template above. It’s easy to miss the slightest of things when learning to program, so do

compare your code against ours character by character; odds are the mistake(s) will jump

out! Anytime you make changes to your own code, just remember to re-save via File >

Save (or ctrl-s), then re-click inside of the terminal window, and then re-type

make hello

at your prompt, followed by Enter. (Just be sure that you are inside of ~/Dropbox/pset1

within your terminal window, as your prompt will confirm or deny.) If you see no more

errors, try running your program by typing

./hello

at your prompt, followed by Enter! Hopefully you now see precisely the below?

hello, world

If not, reach out for help!

Incidentally, if you find gedit 's built-in terminal window too small for your tastes, know

that you can open one in its own window via Menu > Programming > Terminal. You can

Problem Set 1: C

13

then alternate between gedit and Terminal as needed, as by clicking either’s name

along the appliance’s bottom.

Woo hoo! You’ve begun to program!

CS50 Check

Now let’s see if the program you just wrote is correct! Included in the CS50 Appliance is

check50 , a command-line program with which you can check the correctness of (some

of) your programs.

If not already there, navigate your way to ~/Dropbox/pset1 by executing the command

below.

cd ~/Dropbox/pset1

If you then execute

ls

you should see, at least, hello.c . Be sure it’s indeed spelled hello.c and not

Hello.c , hello.C , or the like. If it’s not, know that you can rename a file by executing

mv source destination

where source is the file’s current name, and destination is the file’s new name. For

instance, if you accidentally named your program Hello.c , you could fix it as follows.

mv Hello.c hello.c

Okay, assuming your file’s name is definitely spelled hello.c now, go ahead and

execute the below. Note that 2014.fall.pset1.hello is just a unique identifier for

this problem’s checks.

check50 2014.fall.pset1.hello hello.c

Problem Set 1: C

14

Assuming your program is correct, you should then see output like

:) hello.c exists

:) hello.c compiles

:) prints "hello, world\n"

where each green smiley means your program passed a check (i.e., test). You may also

see a URL at the bottom of check50 's output, but that’s just for staff (though you’re

welcome to visit it).

If you instead see yellow or red smileys, it means your code isn’t correct! For instance,

suppose you instead see the below.

:(hello.c exists

 \ expected hello.c to exist

:| hello.c compiles

 \ can't check until a frown turns upside down

:| prints "hello, world\n"

 \ can't check until a frown turns upside down

Because check50 doesn’t think hello.c exists, as per the red smiley, odds are you

uploaded the wrong file or misnamed your file. The other smileys, meanwhile, are yellow

because those checks are dependent on hello.c existing, and so they weren’t even run.

Suppose instead you see the below.

:) hello.c exists

:) hello.c compiles

:(prints "hello, world\n"

 \ expected output, but not "hello, world"

Odds are, in this case, you printed something other than hello, world\n verbatim, per

the spec’s expectations. In particular, the above suggests you printed hello, world ,

without a trailing newline (\n).

Know that check50 won’t actually record your scores in CS50’s gradebook. Rather, it

lets you check your work’s correctness before you submit your work. Once you actually

Problem Set 1: C

15

submit your work (per the directions at this spec’s end), CS50’s staff will use check50

to evaluate your work’s correctness officially.

CS50 Style

In addition to check50 , the CS50 Appliance comes with style50 , a tool with which you

can evaluate your code’s style vis-à-vis CS50’s style guide3. To run it on, say, hello.c ,

execute the below:

style50 hello.c

You should see zero or more lines of suggestions. Yellow smileys indicate warnings that

you should consider addressing. Red smileys indicate errors that you should definitely

address.

If you instead see java: command not found , execute sudo apt-get -y

install default-jre-headless (which will install software that we forgot to

install for you!), then try again.

Note that style50 is still a work in progress (a "beta" version, so to speak), so

best to consult CS50’s style guide4 for official guidance.

Shorts

Head to https://cs50.harvard.edu/shorts/1 and curl up with Nate’s short on libraries. Be

sure you’re reasonably comfortable answering the below when it comes time to submit

this problem set’s form!

• What’s a library?

• What role does

#include <cs50.h>

play when you write it atop some program?

3 https://manual.cs50.net/style/
4 https://manual.cs50.net/style/

https://manual.cs50.net/style/
https://manual.cs50.net/style/
https://cs50.harvard.edu/shorts/1
https://manual.cs50.net/style/
https://manual.cs50.net/style/

Problem Set 1: C

16

• What role does

-lcs50

play when you pass it as a "command-line argument" to clang ? (Recall that make ,

the program we’ve been using to compile programs in lecture, simply calls clang with

some command-line arguments for you to save you some keystrokes.)

Curl up with at least two other shorts at https://cs50.harvard.edu/shorts/1. Some additional

questions may be in your future!

Hello again, C

Before forging ahead, you might want to review some of the examples that we looked at

in Week 1’s lectures and take a look at a few more, the "source code" for which can be

found at https://cs50.harvard.edu/lectures/1. Allow me to take you on a tour, though feel

free to forge ahead on your own if you’d prefer. Not to worry if your appliance also looks

a bit different from mine.

https://www.youtube.com/watch?

v=bQnyxpf0vk0&list=PLhQjrBD2T380JCGC3qD3nGpqt8iIjx2fV

Itsa Mario

Toward the end of World 1-1 in Nintendo’s Super Mario Brothers, Mario must ascend a

"half-pyramid" of blocks before leaping (if he wants to maximize his score) toward a flag

pole. Below is a screenshot.

https://cs50.harvard.edu/shorts/1
https://cs50.harvard.edu/lectures/1
https://www.youtube.com/watch?v=bQnyxpf0vk0&list=PLhQjrBD2T380JCGC3qD3nGpqt8iIjx2fV
https://www.youtube.com/watch?v=bQnyxpf0vk0&list=PLhQjrBD2T380JCGC3qD3nGpqt8iIjx2fV

Problem Set 1: C

17

Write, in a file called mario.c in your ~/Dropbox/pset1 directory, a program that

recreates this half-pyramid using hashes (#) for blocks. However, to make things more

interesting, first prompt the user for the half-pyramid’s height, a non-negative integer no

greater than 23 . (The height of the half-pyramid pictured above happens to be 8 .) If the

user fails to provide a non-negative integer no greater than 23 , you should re-prompt

for the same again. Then, generate (with the help of printf and one or more loops)

the desired half-pyramid. Take care to align the bottom-left corner of your half-pyramid

with the left-hand edge of your terminal window, as in the sample output below, wherein

underlined text represents some user’s input.

jharvard@appliance (~/dropbox/pset1): ./mario

height: 8

 ##

 ###

 ####

 #####

 ######

 #######

 ########

#########

Problem Set 1: C

18

Note that the rightmost two columns of blocks must be of the same height. No need to

generate the pipe, clouds, numbers, text, or Mario himself.

By contrast, if the user fails to provide a non-negative integer no greater than 23 ,

your program’s output should instead resemble the below, wherein underlined text again

represents some user’s input. (Recall that GetInt will handle some, but not all, re-

prompting for you.)

jharvard@appliance (~/Dropbox/pset1): ./mario

Height: -2

Height: -1

Height: foo

Retry: bar

Retry: 1

##

To compile your program, remember that you can execute

make mario

or, more manually,

clang -o mario mario.c -lcs50

after which you can run your program with the below.

./mario

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2014.fall.pset1.mario mario.c

And if you’d like to play with the staff’s own implementation of mario in the appliance, you

may execute the below starting Tue 9/17.

Problem Set 1: C

19

~cs50/pset1/mario

Not sure where to begin? Not to worry. A walkthrough awaits!

https://www.youtube.com/watch?v=z32BxNe2Sfc

Time for Change

Speaking of money, "counting out change is a blast (even though it boosts mathematical

skills) with this spring-loaded changer that you wear on your belt to dispense quarters,

dimes, nickels, and pennies into your hand." Or so says the website5 on which we found

this here accessory (for ages 5 and up).

Of course, the novelty of this thing quickly wears off, especially when someone pays for a

newspaper with a big bill. Fortunately, computer science has given cashiers everywhere

ways to minimize numbers of coins due: greedy algorithms.

According to the National Institute of Standards and Technology (NIST), a greedy

algorithm6 is one "that always takes the best immediate, or local, solution while finding

an answer. Greedy algorithms find the overall, or globally, optimal solution for some

optimization problems, but may find less-than-optimal solutions for some instances of other

problems."

5 http://hearthsong.com/
6 http://www.nist.gov/dads/HTML/greedyalgo.html

https://www.youtube.com/watch?v=z32BxNe2Sfc
http://hearthsong.com/
http://www.nist.gov/dads/HTML/greedyalgo.html
http://www.nist.gov/dads/HTML/greedyalgo.html
http://hearthsong.com/
http://www.nist.gov/dads/HTML/greedyalgo.html

Problem Set 1: C

20

What’s all that mean? Well, suppose that a cashier owes a customer some change and on

that cashier’s belt are levers that dispense quarters, dimes, nickels, and pennies. Solving

this "problem" requires one or more presses of one or more levers. Think of a "greedy"

cashier as one who wants to take, with each press, the biggest bite out of this problem as

possible. For instance, if some customer is owed 41¢, the biggest first (i.e., best immediate,

or local) bite that can be taken is 25¢. (That bite is "best" inasmuch as it gets us closer to

0¢ faster than any other coin would.) Note that a bite of this size would whittle what was a

41¢ problem down to a 16¢ problem, since 41 - 25 = 16. That is, the remainder is a similar

but smaller problem. Needless to say, another 25¢ bite would be too big (assuming the

cashier prefers not to lose money), and so our greedy cashier would move on to a bite of

size 10¢, leaving him or her with a 6¢ problem. At that point, greed calls for one 5¢ bite

followed by one 1¢ bite, at which point the problem is solved. The customer receives one

quarter, one dime, one nickel, and one penny: four coins in total.

It turns out that this greedy approach (i.e., algorithm) is not only locally optimal but also

globally so for America’s currency (and also the European Union’s). That is, so long as

a cashier has enough of each coin, this largest-to-smallest approach will yield the fewest

coins possible.

How few? Well, you tell us. Write, in a file called greedy.c in your ~/Dropbox/pset1

directory, a program that first asks the user how much change is owed and then spits out

the minimum number of coins with which said change can be made. Use GetFloat from

the CS50 Library to get the user’s input and printf from the Standard I/O library to

output your answer. Assume that the only coins available are quarters (25¢), dimes (10¢),

nickels (5¢), and pennies (1¢).

We ask that you use GetFloat so that you can handle dollars and cents, albeit sans

dollar sign. In other words, if some customer is owed $9.75 (as in the case where a

newspaper costs 25¢ but the customer pays with a $10 bill), assume that your program’s

input will be 9.75 and not $9.75 or 975 . However, if some customer is owed $9

exactly, assume that your program’s input will be 9.00 or just 9 but, again, not $9

or 900 . Of course, by nature of floating-point values, your program will likely work with

inputs like 9.0 and 9.000 as well; you need not worry about checking whether the

user’s input is "formatted" like money should be. And you need not try to check whether

a user’s input is too large to fit in a float . But you should check that the user’s input

makes cents! Er, sense. Using GetFloat alone will ensure that the user’s input is indeed

a floating-point (or integral) value but not that it is non-negative. If the user fails to provide

Problem Set 1: C

21

a non-negative value, your program should re-prompt the user for a valid amount again

and again until the user complies.

Incidentally, do beware the inherent imprecision of floating-point values. For instance,

0.01 cannot be represented exactly as a float. Try printing its value to, say, 50 decimal

places, with code like the below:

float f = 0.01;

printf("%.50f\n", f);

Before doing any math, then, you’ll probably want to convert the user’s input entirely to

cents (i.e., from a float to an int) to avoid tiny errors that might otherwise add up!

Of course, don’t just cast the user’s input from a float to an int ! After all, how many

cents does one dollar equal? And be careful to round7 and not truncate your pennies!

Not sure where to begin? Not to worry, start with a walkthrough:

https://www.youtube.com/watch?v=9dZzyl7dCuw

Incidentally, so that we can automate some tests of your code, we ask that your program’s

last line of output be only the minimum number of coins possible: an integer followed by

\n . Consider the below representative of how your own program should behave, wherein

underlined text is some user’s input.

jharvard@appliance (~/Dropbox/pset1): ./greedy

O hai! How much change is owed?

0.41

4

By nature of floating-point values, that user could also have inputted just .41 . (Were they

to input 41 , though, they’d get many more coins!)

Of course, more difficult users might experience something more like the below.

jharvard@appliance (~/Dropbox/pset1): ./greedy

O hai! How much change is owed?

-0.41

7 https://cs50.harvard.edu/resources/cppreference.com/stdmath/round.html

https://cs50.harvard.edu/resources/cppreference.com/stdmath/round.html
https://www.youtube.com/watch?v=9dZzyl7dCuw
https://cs50.harvard.edu/resources/cppreference.com/stdmath/round.html

Problem Set 1: C

22

How much change is owed?

-0.41

How much change is owed?

foo

Retry: 0.41

4

Per these requirements (and the sample above), your code will likely have some sort of

loop. If, while testing your program, you find yourself looping forever, know that you can

kill your program (i.e., short-circuit its execution) by hitting ctrl-c (sometimes a lot).

We leave it to you to determine how to compile and run this particular program!

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2014.fall.pset1.greedy greedy.c

And if you’d like to play with the staff’s own implementation of greedy in the appliance,

you may execute the below starting Tue 9/17.

~cs50/pset1/greedy

How to Submit

Step 1 of 2

• When ready to submit, open up Chrome inside of the appliance (not on your own

computer) and visit cs50.harvard.edu/submit8, logging in if prompted.

• Click Submit toward the window’s top-left corner.

• Under Problem Set 1 on the screen that appears, click Upload New Submission.

• On the screen that appears, click Add files…. A window entitled Open Files should

appear.

8 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit

Problem Set 1: C

23

• Navigate your way to hello.c , as by clicking jharvard, then double-clicking

Dropbox, then double-clicking pset1, assuming you saved hello.c in ~/

Dropbox/pset1 . Once you find hello.c , click it once to select it, then click Open.

• Click Add files… again, and a window entitled Open Files should appear again.

• Navigate your way to mario.c as before. Click it once to select it, then click Open.

• Navigate your way to greedy.c as before. Click it once to select it, then click Open.

• Click Start upload to upload all of your files at once to CS50’s servers.

• On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

return to cs50.harvard.edu/submit9 and repeat these steps. You may re-submit as

many times as you’d like; we’ll grade your most recent submission, so long as it’s before

the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2014/fall/psets/1/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done!

This was Problem Set 1.

9 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://forms.cs50.net/2014/fall/psets/1/
https://cs50.harvard.edu/submit

	Problem Set 1: C
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Started
	Installing
	Updating
	Dropboxing
	File Manager
	gedit

	Hello, C
	CS50 Check
	CS50 Style
	Shorts
	Hello again, C
	Itsa Mario
	Time for Change
	How to Submit
	Step 1 of 2
	Step 2 of 2

