
1

Problem Set 3: Breakout

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Recommended Reading ... 2

Academic Honesty ... 2

Reasonable ... 3

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 5

Getting Started ... 6

Searching ... 7

search .. 13

Sorting .. 15

sort .. 15

search .. 16

Backstory .. 17

Breaking Out .. 18

breakout .. 23

How to Submit ... 33

Step 1 of 2 .. 33

Step 2 of 2 .. 34

with thanks to Eric Roberts of Stanford

Questions? Head to cs50.harvard.edu/discuss1 or join classmates at office hours2!

Objectives

• Accustom you to reading someone else’s code.

1 https://cs50.harvard.edu/discuss
2 https://cs50.harvard.edu/hours

https://cs50.harvard.edu/discuss
https://cs50.harvard.edu/hours
https://cs50.harvard.edu/discuss
https://cs50.harvard.edu/hours

Problem Set 3: Breakout

2

• Introduce you to an API.

• Acquaint you with event handling.

• Impress your friends.

Recommended Reading

• Page 17 of http://www.howstuffworks.com/c.htm.

• Chapters 20 and 23 of Absolute Beginner’s Guide to C.

• Chapters 13, 15, and 18 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter to the Administrative Board and the outcome is Admonish, Probation, Requirement

to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local

sanctions on top of that outcome that may include an unsatisfactory or failing grade for

work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

http://www.howstuffworks.com/c.htm

Problem Set 3: Breakout

3

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

to the Administrative Board.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

Problem Set 3: Breakout

4

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Problem Set 3: Breakout

5

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily

submit this and all other problem sets to be eligible for a satisfactory grade unless granted

an exception in writing by the course’s heads.

Getting Ready

First, re-acquaint yourself with with our old friends, linear search and binary search (and

Patrick), if hazy:

https://www.youtube.com/watch?v=CX2CYIJLwfg

Next, get to know our new friends, bubble sort, selection sort, insertion sort, and merge

sort (and Jackson, Tommy, and Rob):

https://www.youtube.com/watch?v=8Kp-8OGwphY

Phew, so many shorts. And so many sorts! Ha.

Finally, meet gdb (and Nate again):

https://www.youtube.com/watch?v=USPvePv1uzE

Be sure you’re reasonably comfortable answering the below when it comes time to submit

this problem set’s form!

• Why does binary search require that an array be sorted?

• Why is bubble sort in O(n2)?

• Why is insertion sort in Ω(n)?

• In no more than 3 sentences, how does selection sort work?

• What’s an upper bound on the (worst-case) running time of merge sort?

• gdb lets you "debug" program, but, more specifically, what does it let you do?

https://www.youtube.com/watch?v=CX2CYIJLwfg
https://www.youtube.com/watch?v=8Kp-8OGwphY
https://www.youtube.com/watch?v=USPvePv1uzE

Problem Set 3: Breakout

6

Getting Started

Recall that, for Problem Sets 1 and 2, you started writing programs from scratch, creating

your own pset1 and pset2 directories with mkdir . For Problem Set 3, you’ll instead

download "distribution code" (otherwise known as a "distro"), written by us, and add your

own lines of code to it. You’ll first need to read and understand our code, though, so this

problem set is as much about learning to read someone else’s code as it is about writing

your own!

Let’s get you started. Go ahead and open a terminal window if not open already (whether

by opening gedit via Menu > Accessories > gedit or by opening Terminal itself via Menu

> Accessories > Terminal). Then execute

update50

to make sure your appliance is up-to-date. Then close the terminal window (or gedit)

and re-open it. Then execute

cd ~/Dropbox

followed by

wget http://cdn.cs50.net/2014/fall/psets/3/pset3/pset3.zip

to download a ZIP of this problem set’s distro into your appliance (with a command-line

program called wget). You should see a bunch of output followed by:

'pset3.zip' saved

If you instead see

unable to resolve host address

your appliance probably doesn’t have Internet access (even if your laptop does), in which

case the simplest fix is probably to restart your appliance via Menu > Log Off, after which

you can try wget again.

Problem Set 3: Breakout

7

Ultimately, confirm that you’ve indeed downloaded pset3.zip by executing:

ls

Then, run

unzip pset3.zip

to unzip the file. If you then run ls again, you should see that you have a newly unzipped

directory called pset3 as well. Proceed to execute

cd pset3

followed by

ls

and you should see that the directory contains two "subdirectories":

breakout find

How fun!

Searching

Okay, let’s dive into one of those subdirectories. Execute the command below in a terminal

window.

cd ~/Dropbox/pset3/find

If you list the contents of this directory (remember how?), you should see the below.

helpers.c helpers.h Makefile find.c generate.c

Wow, that’s a lot of files, eh? Not to worry, we’ll walk you through them.

Problem Set 3: Breakout

8

Implemented in generate.c is a program that uses a "pseudorandom-number

generator" (via a function called drand48) to generate a whole bunch of random (well,

pseudorandom, since computers can’t actually generate truly random) numbers, one per

line. Go ahead and compile this program by executing the command below.

make generate

Now run the program you just compiled by executing the command below.

./generate

You should be informed of the program’s proper usage, per the below.

Usage: generate n [s]

As this output suggests, this program expects one or two command-line arguments. The

first, n , is required; it indicates how many pseudorandom numbers you’d like to generate.

The second, s , is optional, as the brackets are meant to imply; if supplied, it represents

the value that the pseudorandom-number generator should use as its "seed." A seed

is simply an input to a pseudorandom-number generator that influences its outputs. For

instance, if you seed drand48 by first calling srand48 (another function whose purpose

is to "seed" drand48) with an argument of, say, 1 , and then call drand48 itself three

times, drand48 might return 2728 , then 29785 , then 54710 . But if you instead seed

drand48 by first calling srand48 with an argument of, say, 2 , and then call drand48

itself three times, drand48 might instead return 59797 , then 10425 , then 37569 .

But if you re-seed drand48 by calling srand48 again with an argument of 1 , the next

three times you call drand48 , you’ll again get 2728 , then 29785 , then 54710 ! See,

not so random.

Go ahead and run this program again, this time with a value of, say, 10 for n , as in the

below; you should see a list of 10 pseudorandom numbers.

./generate 10

Run the program a third time using that same value for n ; you should see a different list of

10 numbers. Now try running the program with a value for s too (e.g., 0), as in the below.

Problem Set 3: Breakout

9

./generate 10 0

Now run that same command again:

./generate 10 0

Bet you saw the same "random" sequence of ten numbers again? Yup, that’s what

happens if you don’t vary a pseudorandom number generator’s initial seed.

Now take a look at generate.c itself with gedit . (Remember how?) Comments atop

that file explain the program’s overall functionality. But it looks like we forgot to comment

the code itself. Read over the code carefully until you understand each line and then

comment our code for us, replacing each TODO with a phrase that describes the purpose

or functionality of the corresponding line(s) of code. (Know that an unsigned int is

just an int that cannot be negative.) And for more details on rand and srand , recall

that you can execute:

man drand48

and:

man srand48

(Those functions aren’t in CS50 Reference3).

Once done commenting generate.c , re-compile the program to be sure you didn’t

break anything by re-executing the command below.

make generate

If generate no longer compiles properly, take a moment to fix what you broke!

Now, recall that make automates compilation of your code so that you don’t have to

execute clang manually along with a whole bunch of switches. Notice, in fact, how make

3 https://reference.cs50.net/

https://reference.cs50.net/
https://reference.cs50.net/

Problem Set 3: Breakout

10

just executed a pretty long command for you, per the tool’s output. However, as your

programs grow in size, make won’t be able to infer from context anymore how to compile

your code; you’ll need to start telling make how to compile your program, particularly

when they involve multiple source (i.e., .c) files. And so we’ll start relying on "Makefiles,"

configuration files that tell make exactly what to do.

How did make know how to compile generate in this case? It actually used a configuration

file that we wrote. Using gedit , go ahead and look at the file called Makefile that’s

in the same directory as generate.c . This Makefile is essentially a list of rules that

we wrote for you that tells make how to build generate from generate.c for you. The

relevant lines appear below.

generate: generate.c

 clang -ggdb3 -O0 -std=c99 -Wall -Werror -o generate generate.c

The first line tells make that the "target" called generate should be built by invoking the

second line’s command. Moreover, that first line tells make that generate is dependent

on generate.c , the implication of which is that make will only re-build generate on

subsequent runs if that file was modified since make last built generate . Neat time-

saving trick, eh? In fact, go ahead and execute the command below again, assuming you

haven’t modified generate.c .

make generate

You should be informed that generate is already up-to-date. Incidentally, know that the

leading whitespace on that second line is not a sequence of spaces but, rather, a tab.

Unfortunately, make requires that commands be preceded by tabs, so be careful not to

change them to spaces with gedit (which automatically converts tabs to four spaces),

else you may encounter strange errors! The -Werror flag, recall, tells clang to treat

warnings (bad) as though they’re errors (worse) so that you’re forced (in a good, instructive

way!) to fix them.

Now take a look at find.c with gedit . Notice that this program expects a single

command-line argument: a "needle" to search for in a "haystack" of values. Once done

looking over the code, go ahead and compile the program by executing the command

below.

Problem Set 3: Breakout

11

make find

Notice, per that command’s output, that make actually executed the below for you.

clang -ggdb3 -O0 -std=c99 -Wall -Werror -o find find.c helpers.c -lcs50 -lm

Notice further that you just compiled a program comprising not one but two .c files:

helpers.c and find.c . How did make know what to do? Well, again, open up

Makefile to see the man behind the curtain. The relevant lines appear below.

find: find.c helpers.c helpers.h

 clang -ggdb3 -O0 -std=c99 -Wall -Werror -o find find.c helpers.c -lcs50 -

lm

Per the dependencies implied above (after the colon), any changes to find.c ,

helpers.c , or helpers.h will compel make to rebuild find the next time it’s invoked

for this target.

Go ahead and run this program by executing, say, the below.

./find 13

You’ll be prompted to provide some hay (i.e., some integers), one "straw" at a time. As

soon as you tire of providing integers, hit ctrl-d to send the program an EOF (end-of-file)

character. That character will compel GetInt from the CS50 Library to return INT_MAX ,

a constant that, per find.c , will compel find to stop prompting for hay. The program

will then look for that needle in the hay you provided, ultimately reporting whether the

former was found in the latter. In short, this program searches an array for some value.

At least, it should, but it won’t find anything yet! That’s where you come in. More on your

role in a bit.

In turns out you can automate this process of providing hay, though, by "piping" the

output of generate into find as input. For instance, the command below passes 1,000

pseudorandom numbers to find , which then searches those values for 42 .

./generate 1000 | ./find 42

Problem Set 3: Breakout

12

Note that, when piping output from generate into find in this manner, you won’t

actually see generate 's numbers, but you will see find 's prompts.

Alternatively, you can "redirect" generate 's output to a file with a command like the

below.

./generate 1000 > numbers.txt

You can then redirect that file’s contents as input to find with the command below.

./find 42 < numbers.txt

Let’s finish looking at that Makefile . Notice the line below.

all: find generate

This target implies that you can build both generate and find simply by executing

the below.

make all

Even better, the below is equivalent (because make builds a Makefile 's first target

by default).

make

If only you could whittle this whole problem set down to a single command! Finally, notice

these last lines in Makefile :

clean:

 rm -f *.o a.out core find generate

This target allows you to delete all files ending in .o or called core (more on that soon!),

find , or generate simply by executing the command below.

Problem Set 3: Breakout

13

make clean

Be careful not to add, say, *.c to that last line in Makefile ! (Why?) Any line,

incidentally, that begins with # is just a comment.

search

And now the fun begins! Notice that find.c calls search , a function declared in

helpers.h . Unfortunately, we forgot to implement that function fully in helpers.c !

(To be sure, we could have put the contents of helpers.h and helpers.c in find.c

itself. But it’s sometimes better to organize programs into multiple files, especially when

some functions are essentially utility functions that might later prove useful to other

programs as well, much like those in the CS50 Library.) Take a peek at helpers.c with

gedit , and you’ll see that search always returns false , whether or not value is

in values . Re-write search in such a way that it uses linear search, returning true

if value is in values and false if value is not in values . Take care to return

false right away if n isn’t even positive.

When ready to check the correctness of your program, try running the command below.

./generate 1000 50 | ./find 127

Because one of the numbers outputted by generate , when seeded with 50 , is 127 ,

your code should find that "needle"! By contrast, try running the command below as well.

./generate 1000 50 | ./find 128

Because 128 is not among the numbers outputted by generate , when seeded with

50 , your code shouldn’t find that needle. Best to try some other tests as well, as by running

generate with some seed, taking a look at its output, then piping that same output to

find , looking for a "needle" you know to be among the "hay".

Incidentally, note that main in find.c is written in such a way that find returns 0 if

the needle is found, else it returns 1 . You can check the so-called "exit code" with which

main returns by executing

Problem Set 3: Breakout

14

echo $?

after running some other command. For instance, assuming your implementation of

search is correct, if you run

./generate 1000 50 | ./find 127

echo $?

you should see 0 , since 127 is, again, among the 1,000 numbers outputted by

generate when seeded with 50 , and so search (written by you) should return true ,

in which case main (written by us) should return (i.e., exit with) 0 . By contrast, assuming

your implementation of search is correct, if you run

./generate 1000 50 | ./find 128

echo $?

you should see 1 , since 128 is, again, not among the 1,000 numbers outputted by

generate when seeded with 50 , and so search (written by you) should return

false , in which case main (written by us) should return (i.e., exit with) 1 . Make sense?

When ready to check the correctness of your program officially with check50 , you may

execute the below. Be sure to run the command inside of ~/Dropbox/pset3/find .

check50 2014.fall.pset3.find helpers.c

Incidentally, be sure not to get into the habit of testing your code with check50 before

testing it yourself. (And definitely don’t get into an even worse habit of only testing your

code with check50 !) Suffice it to say check50 doesn’t exist in the real world, so running

your code with your own sample inputs, comparing actual output against expected output,

is the best habit to get into sooner rather than later. Truly, don’t do yourself a long-term

disservice!

Anyhow, if you’d like to play with the staff’s own implementation of find in the appliance,

you may execute the below.

~cs50/pset3/find

Problem Set 3: Breakout

15

Sorting

Alright, linear search is pretty meh. Recall from Week 0 that we can do better, but first

we’d best sort that hay.

sort

Notice that find.c calls sort , a function declared in helpers.h . Unfortunately, we

forgot to implement that function fully too in helpers.c ! Take a peek at helpers.c

with gedit , and you’ll see that sort returns immediately, even though find 's main

function does pass it an actual array.

Now, recall the syntax for declaring an array. Not only do you specify the array’s type, you

also specify its size between brackets, just as we do for haystack in find.c :

int haystack[MAX];

But when passing an array, you only specify its name, just as we do when passing

haystack to sort in find.c :

sort(haystack, size);

(Why do you think we pass in the size of that array separately?)

When declaring a function that takes a one-dimensional array as an argument, though,

you don’t need to specify the array’s size, just as we don’t when declaring sort in

helpers.h (and helpers.c):

void sort(int values[], int n);

Go ahead and implement sort so that the function actually sorts, from smallest to largest,

the array of numbers that it’s passed, in such a way that its running time is in O(n2), where

n is the array’s size. Odds are you’ll want to implement bubble sort, selection sort, or

insertion sort, if only because we discussed them in Week 3. Just realize that there’s no

one "right" way to implement any of those algorithms; variations abound. In fact, you’re

Problem Set 3: Breakout

16

welcome to improve upon them as you see fit, so long as your implementation remains in

O(n2). However, take care not to alter our declaration of sort . Its prototype must remain:

void sort(int values[], int n);

As this return type of void implies, this function must not return a sorted array; it must

instead "destructively" sort the actual array that it’s passed by moving around the values

therein. As we’ll discuss in Week 4, arrays are not passed "by value" but instead "by

reference," which means that sort will not be passed a copy of an array but, rather, the

original array itself.

Although you may not alter our declaration of sort , you’re welcome to define your own

function(s) in helpers.c that sort itself may then call.

We leave it to you to determine how best to test your implementation of sort . But don’t

forget that printf and, per Week 4’s first lecture, gdb are your friends. And don’t forget

that you can generate the same sequence of pseudorandom numbers again and again by

explicitly specifying generate 's seed. Before you ultimately submit, though, be sure to

remove any such calls to printf , as we like our programs' outputs just they way they are!

Here’s Zamyla with some tips:

https://www.youtube.com/watch?v=U8k-0StE1Ik

Incidentally, check out Resources on the course’s website for a quick-reference guide

for gdb . Again, if you’d like to play with the staff’s own implementation of find in the

appliance, you may execute the below.

~cs50/pset3/find

search

Now that sort (presumably) works, it’s time to improve upon search , the other function

that lives in helpers.c . Recall that your first version implemented linear search. Rip out

the lines that you wrote earlier (sniff) and re-implement search as Binary Search, that

divide-and-conquer strategy that we employed in Week 0. You are welcome to take an

iterative approach (as with a loop) or a recursive approach (wherein a function calls itself).

https://www.youtube.com/watch?v=U8k-0StE1Ik

Problem Set 3: Breakout

17

If you pursue the latter, though, know that you may not change our declaration of search ,

but you may write a new, recursive function (that perhaps takes different parameters) that

search itself calls. When it comes time to submit this problem set, it suffices to submit

this new-and-improved version of search ; you needn’t submit your original version that

used linear search.

Here’s Zamyla again:

https://www.youtube.com/watch?v=7DSRJj7qfP8

Backstory

One day in the late summer of 1975, Nolan Bushnell [founder of Atari and,

um, Chuck E. Cheese’s], defying the prevailing wisdom that paddle games

were over, decided to develop a single-player version of Pong; instead of

competing against an opponent, the player would volley the ball into a wall

that lost a brick whenever it was hit. He called [Steve] Jobs into his office,

sketched it out on his little blackboard, and asked him to design it. There

would be a bonus, Bushnell told him, for every chip fewer than fifty that he

used. Bushnell knew that Jobs was not a great engineer, but he assumed,

correctly, that he would recruit [Steve] Wozniak, who was always hanging

around. "I looked at it as a two-for-one thing," Bushnell recalled. "Woz was

a better engineer."

Wozniak was thrilled when Jobs asked him to help and proposed splitting the

fee. "This was the most wonderful offer in my life, to actually design a game

that people would use," he recalled. Jobs said it had to be done in four days

and with the fewest chips possible. What he hid from Wozniak was that the

deadline was one that Jobs had imposed, because he needed to get to the

All One Farm to help prepare for the apple harvest. He also didn’t mention

that there was a bonus tied to keeping down the number of chips.

"A game like this might take most engineers a few months," Wozniak

recalled. "I thought that there was no way I could do it, but Steve made me

sure that I could." So he stayed up four nights in a row and did it. During the

day at HP, Wozniak would sketch out his design on paper. Then, after a fast-

food meal, he would go right to Atari and stay all night. As Wozniak churned

https://www.youtube.com/watch?v=7DSRJj7qfP8

Problem Set 3: Breakout

18

out the design, Jobs sat on a bench to his left implementing it by wire-

wrapping the chips onto a breadboard. "While Steve was breadboarding, I

spent time playing my favorite game ever, which was the auto racing game

Gran Trak 10," Wozniak said.

Astonishingly, they were able to get the job done in four days, and Wozniak

used only forty-five chips. Recollections differ, but by most accounts Jobs

simply gave Wozniak half of the base fee and not the bonus Bushnell paid for

saving five chips. It would be another ten years before Wozniak discovered

(by being shown the tale in a book on the history of Atari titled Zap) that Jobs

had been paid this bonus….

— Walter Isaacson '74 Steve Jobs

Breaking Out

Your final challenge for this problem set is to implement the same game that Steve and

Steve did, albeit in software rather than hardware. That game is Breakout.

Whereas all of your C programs to date have only had "command-line interfaces" (CLIs),

this one will have a graphical user interface (GUI), not unlike Scratch! You’ll be building

Breakout atop the Stanford Portable Library (SPL), which is similar in spirit to the CS50

Library but includes an "application programming interface" (API) for GUI programming

and more.

Let’s take a look at what you can do with SPL by way of some of Week 4’s examples. Go

ahead and execute the below.

cd ~/Dropbox

wget http://cdn.cs50.net/2014/fall/lectures/4/m/src4m.zip

unzip src4m.zip

rm -f src4m.zip

cd src4m

If you then execute ls , among the files you see should be bounce.c , button.c ,

checkbox.c , click.c , cursor.c , label.c , slider.c , text.c , and

window.c . Go ahead and compile the last of those files as follows:

Problem Set 3: Breakout

19

make window

And then execute it as follows:

./window

A window quite like the below should appear and then disappear after 5 seconds.

Neat, eh? Go ahead and open up window.c with gedit . Let’s take a tour together:

https://www.youtube.com/watch?v=IMOujDlGebQ

How did we know how to call newGWindow like that? Well, there aren’t man pages for

SPL, but you can peruse the relevant "header file" (i.e., gwindow.h) by executing:

gedit /usr/include/spl/gwindow.h

What’s with /usr/include/spl/gwindow.h ? That just means that gwindow.h lives

deep in the appliance in a directory called spl , which lives in a directory called include ,

which lives in a directory called usr , which lives in the "root" (aka /) of the appliance’s

(virtual) hard drive.

https://www.youtube.com/watch?v=IMOujDlGebQ

Problem Set 3: Breakout

20

Anyhow, if you poke around gwindow.h with gedit , odds are you’ll be a bit

overwhelmed. No biggee. Because SPL’s author has commented the code in a standard

way, it turns out that you can generate more user-friendly, web-based documentation

as a result! Indeed, take a look now at http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/

gwindow.html, and you’ll see a much friendlier format. (Well, relatively speaking.) Click

newGWindow under Functions, and you’ll see its prototype:

GWindow newGWindow(double width, double height);

That’s how we knew! See http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/index.html

for an index into SPL’s documentation, though we’ll point out more specific places to look.

In the interests of full disclosure, we should mention that SPL is still in beta, so

there may be some bugs in its documentation. When in doubt, best to consult those

raw header files instead!

Incidentally, even though I included gwindow.h with

#include "gwindow.h"

on video, we’ve since installed SPL deep inside the appliance (for convenience), so you

should now include that header file (and other SPL header files) with code like:

#include <spl/gwindow.h>

Anyhow, now open up click.c (in ~/Dropbox/src4m) with gedit . This one’s a bit

more involved but it’s representative of how to "listen" for "events", quite like those you

could "broadcast" in Scratch. Let’s take a look.

https://www.youtube.com/watch?v=BStiekPFKWI

See http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gevents.html for SPL’s

documentation of GEvent .

Now open up cursor.c (in ~/Dropbox/src4m) with gedit . This program, too,

handles events, but it also responds to those events by moving a circle (well, a GOval)

in lockstep. Let’s take a look.

http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gwindow.html
http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gwindow.html
http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/index.html
https://www.youtube.com/watch?v=BStiekPFKWI
http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gevents.html

Problem Set 3: Breakout

21

https://www.youtube.com/watch?v=xsB0v8GtVMw

See http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gobjects.html for SPL’s

documentation of GOval and other types of objects.

Next open bounce.c (in ~/Dropbox/src4m) with gedit . This one uses a bit of

arithmetic to bounce a circle back and forth between a window’s edges. Let’s take a look.

https://www.youtube.com/watch?v=8RMHJe1ZpKM

Finally, take a look at button.c , checkbox.c , label.c , slider.c , and text.c

in any order with gedit . And feel free to join me on a tour:

https://www.youtube.com/watch?v=uFnsMLEgajQ

And, of course, feel free to compile (as with make) and run any of those programs.

Phew, that was a lot. Not to worry! Even though all this might feel like a lot, all we’ve

really done is introduce you to some Scratch-like puzzle pieces, albeit in C! Arcane puzzle

pieces, to be sure, so do ask lots of questions of classmates and staff as needed.

https://www.youtube.com/watch?v=xsB0v8GtVMw
http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gobjects.html
https://www.youtube.com/watch?v=8RMHJe1ZpKM
https://www.youtube.com/watch?v=uFnsMLEgajQ

Problem Set 3: Breakout

22

Problem Set 3: Breakout

23

breakout

Okay, let’s see what the distribution code for breakout itself does. Go ahead and

execute

cd ~/Dropbox/pset3/breakout

followed by

make breakout

or, more simply,

make

to compile the distro. Then execute

./breakout

to run the program as is. A window like the below should appear.

Problem Set 3: Breakout

24

Problem Set 3: Breakout

25

Hm, not much of a game. Yet!

Now try out the staff’s solution by executing the below.

~cs50/pset3/breakout/breakout

A window like the below should appear.

Problem Set 3: Breakout

26

Problem Set 3: Breakout

27

Wow! Go ahead and click somewhere inside that window in order to play. (You might need

to enlarge your appliance’s window in order to see the entirety of the game’s window.)

The goal, quite simply, is to bounce the ball off of the paddle so as to hit bricks with it. If

you break all the bricks, you win! But if you miss the ball three times, you lose! To quit the

game, hit control-c back in the terminal window.

Nice. Let’s make your implementation look more like that one. But, first, a tour!

Open up breakout.c with gedit and take a moment to scroll through it to get a sense

of what lies ahead. Let’s walk through it from top to bottom.

• Atop the file you’ll see some familiar header files. We’ve also included some header

files from SPL.

• Next up are some constants, values that you don’t need to change, but because

the code we’ve written (and that you’ll write) needs to know these values in a few

places, we’ve factored them out as constants so that we or you could, theoretically,

change them in one convenient location. By contrast, hard-coding the same number

(pejoratively known as a "magic number") into your code in multiple places is

considered bad practice, since you’d have to remember to change it, potentially, in all

of those places.

• Below those constants are a bunch of prototypes for functions that are defined below

main . More on each of those soon.

• Next up is our old friend, main . It looks like the first thing that main does is "seed"

that so-called PRNG with the current time. (See man srand48 and man 2 time

if curious.) Again, to seed a PRNG simply means to initialize it in such a way that the

numbers it will eventually spit out will appear to be random. It’s deliberate, then, that

we’re initializing the PRNG with the current time: time’s always changing. Were we

instead to initialize the PRNG with some hard-coded value, it’d always spit out the same

sequence of "random" numbers.

After that call to srand48 , it looks like main calls newGWindow , passing in a desired

WIDTH and HEIGHT . That function "instantiates" (i.e., creates) a new graphical

window, returning some sort of reference thereto. (It’s technically a pointer, but that

detail, and the accompanying * , is, again, hidden from us by SPL.) That function’s

return value is apparently stored in a variable called window whose type is GWindow ,

which happens to be declared in a gwindow.h header file that you may have glimpsed

earlier.

Problem Set 3: Breakout

28

Next, main calls initBricks , a function written partly by us (and, soon, mostly by

you!) that instantiates a grid of bricks atop the game’s window.

Then main calls initBall , which instantiates the ball that will be used to play

Breakout. Passed into that function is window so that the function knows where to

"place" (i.e., draw) the ball. The function returns a GOval (graphical oval) whose width

and height will simply be equal (ergo a circular ball).

Called by main next is initPaddle , which instantiates the game’s paddle; it returns

a GRect (graphical rectangle).

Then main calls initScoreboard , which instantiates the game’s scoreboard,

which is simply a GLabel (graphical label).

Below all those function calls are a few definitions of variables, namely bricks ,

lives , and points . Below those is a loop, which is meant to iterate again and again

so long as the user has lives left to live and bricks left to break. Of course, there’s not

much code in that loop now!

Below the loop is a call to waitForClick , a function that does exactly that so that

the window doesn’t close until the user intends.

Not too bad, right? Let’s next take a closer look at those functions.

• In initBricks , you’ll eventually write code that instantiates a grid of bricks in the

window. Those constants we saw earlier, ROWS and COLS , represent that grid’s

dimensions. How to draw a grid of bricks on the screen? Well, odds are you’ll want to

employ a pair of for loops, one nested inside of the other. And within that innermost

loop, you’ll likely want to instantiate a GRect of some width and height (and color!)

to represent a brick.

• In initBall , you’ll eventually write code that instantiates a ball (that is, a circle, or

really a GOval) and somehow center it in the window.

• In initPaddle , you’ll eventually write code that instantiates a paddle (just a GRect)

that’s somehow centered in the bottom-middle of the game’s window.

• Finally, in initScoreboard , you’ll eventually write code that instantiates a

scoreboard as, quite simply, a GLabel whose value is a number (well, technically, a

char* , which we once knew as a string).

Problem Set 3: Breakout

29

• Now, we’ve already implemented updateScoreboard for you. All that function does,

given a GWindow , a GLabel , and an int , is convert the int to a string (okay,

char*) using a function called sprintf , after which it sets the label to that value

and then re-centers the label (in case the int has more digits than some previous

int). Why did we allocate an array of size 12 for our representation of that int as

a string ? No worries if the reason’s non-obvious, but give some though as to how

wide the most positive (or most negative!) int might be. You’re welcome to change

this function, but you’re not expected to.

• Last up is detectCollision , another function that we’ve written for you. (Phew!)

This one’s a bit more involved, so do spend some time reading through it. This function’s

purpose in life, given the ball as a GOval , is to determine whether that ball has

collided with (i.e., is overlapping) some other object (well, GObject) in the game.

(A GRect , GOval , or GLabel can also be thought of and treated as a GObject ,

per http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gobjects.html.) To do so, it

cuts some corners (figuratively but also kind of literally) by checking whether any of the

ball’s "corners," as defined by the ball’s "bounding box", per the below (wherein x and

y represent coordinates, and r represents the ball’s radius) are touching some other

GObject (which might be a brick or a paddle or even something else).

Alright, ready to break out Breakout?

If you’re like me, odds are you’ll find it easiest to implement Breakout via some baby

steps, each of which will get you closer and closer to a great outcome. Rather than try to

implement the whole game at once, allow me to suggest that you proceed as follows:

1. Try out the staff’s solution again (via ~cs50/pset3/breakout/breakout) to

remind yourself how our implementation behaves. Yours doesn’t need to be identical.

http://cdn.cs50.net/2013/fall/lectures/5/m/src5m/spl/doc/gobjects.html

Problem Set 3: Breakout

30

In fact, all the better if you personalize yours. But playing with our implementation

should help guide you toward yours.

2. Implement initPaddle . Per the function’s return value, your paddle should be

implemented as a GRect . Odds are you’ll first want to decide on a width and height

for your paddle, perhaps declaring them both atop breakout.c with constants. Then

calculate coordinates (x and y) for your paddle, keeping in mind that it should be initially

aligned in the bottom-middle of your game’s window. We leave it to you to decide

exactly where. Odds are some arithmetic involving the window’s width and height and

the paddle’s width and height will help you center it. Keep in mind that x and y refer

to a GRect 's top-left corner, not its own middle. Your paddle’s size and location

doesn’t need to match the staff’s precisely, but it should be perfectly centered, near the

window’s bottom. You’re welcome to choose a color for it too, for which setColor

and setFilled might be of interest. Finally, instantiate your paddle with newGRect .

(Take note of that function’s prototype at http://cdn.cs50.net/2014/fall/psets/3/pset3/

spl/doc/gobjects.html.) Then return the GRect returned by newGRect (rather than

NULL , which the distribution code returns only so that the program will compile without

initPaddle fully implemented).

3. Now, initPaddle 's purpose in life is only to instantiate and return a paddle (i.e.,

GRect). It shouldn’t handle any of the paddle’s movement. For that, turn your attention

to the TODO up in main . Proceed to replace that TODO with some lines of code

that respond to a user’s mouse movements in such a way that the paddle follows

the movements, but only along its (horizontal) x-axis. Look back at cursor.c for

inspiration, but keep in mind that cursor.c allowed that circle to move along a

(vertical) y-axis as well, which we don’t want for Breakout, else the paddle could move

anywhere (which might be cool but not exactly Breakout).

4. Now turn your attention to the TODO in initBricks . Implement that function in such

a way that it instantiates a grid of bricks (with ROWS rows and COLS columns), with

each such brick implemented as a GRect . Drawing a GRect (or even a bunch of

them) isn’t all that different from drawing a GOval (or circle). Odds are, though, you’ll

want to instantiate them within a for loop that’s within a for loop. (Think back to

mario , perhaps!) Be sure to leave a bit of a gap between adjacent bricks, just like

we did; exactly how many pixels is up to you. And we leave it to you to select your

bricks' colors.

http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gobjects.html
http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gobjects.html

Problem Set 3: Breakout

31

5. Now implement initBall , whose purpose in life is to instantiate a ball in the

window’s center. (Another opportunity for a bit of arithmetic!) Per the function’s

prototype, be sure to return a GOval .

6. Then, back in main , where there used to be a TODO , proceed to write some additional

code (within that same while loop) that compels that ball to move. Here, too, take

baby steps. Look to bounce.c first for ideas on how to make the ball bounce back

and forth between your window’s edges. (Not the ultimate goal, but it’s a step toward

it!) Then figure out how to make the ball bounce up and down instead of left and

right. (Closer!) Then figure out how to make the ball move at an angle. Then, utilize

drand48 to make the ball’s initial velocity random, at least along its (horizontal) x-

axis. Note that, per its man page, drand48 returns "nonnegative double-precision

floating-point values uniformly distributed between [0.0, 1.0)." In other words, it returns

a double between 0.0 (inclusive) and 1.0 (exclusive). If you want your velocity to be

faster than that, simply add some constant to it and/or multiply it by some constant!

Ultimately, be sure that the ball still bounces off edges, including the window’s bottom

for now.

7. When ready, add some additional code to main (still somewhere inside of that

while loop) that compels the ball to bounce off of the paddle if it collides with

it on its way downward. Odds are you’ll want to call that function we wrote,

detectCollision , inside that loop in order to detect whether the ball’s collided with

something so that, if so, you can somehow handle such an event. Of course, the ball

could collide with the paddle or with any one of those bricks. Keep in mind, then, that

detectCollision could return any such GObject ; it’s left to you to determine

what has been struck. Know, then, that if you store its return value, as with

GObject object = detectCollision(window, ball);

you can determine whether that object is your game’s paddle, as with the below.

if (object == paddle)

{

 // TODO

}

More generally, you can determine if that object is a GRect with:

Problem Set 3: Breakout

32

if (strcmp(getType(object), "GRect") == 0)

{

 // TODO

}

Once it comes time to add a GLabel to your game (for its scoreboard), you can

similarly determine if that object is GLabel , in which case it might be a collision

you want to ignore. (Unless you want your scoreboard to be something the ball can

bounce off of. Ours isn’t.)

if (strcmp(getType(object), "GLabel") == 0)

{

 // TODO

}

8. Once you have the ball bouncing off the paddle (and window’s edges), focus your

attention again on that while loop in main and figure out how to detect if the

ball’s hit a brick and how to remove that brick from the grid if so. Odds are you’ll

find removeGWindow of interest, per http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/

doc/gwindow.html. SPL’s documentation incorrectly refers to that function as

remove , but it’s indeed removeGWindow you want, whose prototype, to be

clear, is the below.

void removeGWindow(GWindow gw, GObject gobj);

9. Now decide how to determine whether the ball has zoomed past the paddle and

struck the window’s bottom edge, in which case the user should lose a life and

gameplay should probably pause until the user clicks the mouse button, as in the staff’s

implementation. Odds are detecting this situation isn’t all that different from the code

you already wrote for bouncing; you just don’t want to bounce off that bottom edge

anymore!

10.Lastly, implement initScoreboard in such a way that the function instantiates and

positions a GLabel somewhere in your game’s window. Then, enhance main in

such a way that the text of that GLabel is updated with the user’s score anytime the

user breaks a brick. Indeed, be sure that your program keeps track of how many lives

remain and how many bricks remain, the latter of which is inversely related to how

http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gwindow.html
http://cdn.cs50.net/2014/fall/psets/3/pset3/spl/doc/gwindow.html

Problem Set 3: Breakout

33

many points you should give the user for each brick broken; our solution awards one

point per brick, but you’re welcome to offer different rewards. A user’s game should

end (i.e., the ball should stop moving) after a user runs out of lives or after all bricks

are broken. We leave it to you to decide what to do in both cases, if anything more!

Because this game expects a human to play, no check50 for this one! Best to invite

some friends to find bugs!

How to Submit

Step 1 of 2

When ready to submit, open up a Terminal window and navigate your way to ~/Dropbox .

Create a ZIP (i.e., compressed) file containing your entire pset3 directory by executing

the below. Incidentally, -r means "recursive," which in this case means to ZIP up

everything inside of pset3 , including any subdirectories (or even subsubdirectories!).

zip -r pset3.zip pset3

If you type ls thereafter, you should see that you have a new file called pset3.zip

in ~/Dropbox . (If you realize later that you need to make a change to some file and re-

ZIP everything, you can delete the ZIP file you already made with rm pset3.zip , then

create a new ZIP file as before.) * Once done creating your ZIP file, open up Chrome inside

of the appliance (not on your own computer) and visit cs50.harvard.edu/submit4, logging

in if prompted. * Click Submit toward the window’s top-left corner. * Under Problem Set 3

on the screen that appears, click Upload New Submission. * On the screen that appears,

click Add files…. A window entitled Open Files should appear. * Navigate your way

to pset3.zip , as by clicking jharvard, then double-clicking Dropbox. Once you find

pset3.zip , click it once to select it, then click Open. * Click Start upload to upload your

ZIP file to CS50’s servers. * On the screen that appears, you should see a window with

No File Selected. If you move your mouse toward the window’s lefthand side, you should

see a list of the files you uploaded. Click each to confirm the contents of each. (No need

to click any other buttons or icons.) If confident that you submitted the files you intended,

consider your source code submitted! If you’d like to re-submit different (or modified) files,

4 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit

Problem Set 3: Breakout

34

simply return to cs50.harvard.edu/submit5 and repeat these steps. You may re-submit as

many times as you’d like; we’ll grade your most recent submission, so long as it’s before

the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2014/fall/psets/3/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done!

This was Problem Set 3.

5 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://forms.cs50.net/2014/fall/psets/3/
https://cs50.harvard.edu/submit

	Problem Set 3: Breakout
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	Searching
	search

	Sorting
	sort
	search

	Backstory
	Breaking Out
	breakout

	How to Submit
	Step 1 of 2
	Step 2 of 2

