
1

Problem Set 6: Web Server

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Academic Honesty ... 2

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 4

Getting Started ... 5

server.c .. 11

What To Do .. 15

lookup .. 15

main ... 16

How to Submit ... 18

Step 1 of 2 .. 18

Step 2 of 2 .. 19

due by noon on Fri 10/31 (or Sat 11/1 with late day)

My apologies that this problem set took longer than expected to write. If you need

more time, just drop heads@cs50.harvard.edu1 a note to coordinate. We’re happy

to be flexible with this one, but we do want to keep you on track for Problem Set

7 too.

Objectives

• Become familiar with HTTP.

• Apply familiar techniques in unfamiliar contexts.

• Transition from C to web programming.

1 mailto:heads@cs50.harvard.edu

mailto:heads@cs50.harvard.edu
mailto:heads@cs50.harvard.edu

Problem Set 6: Web Server

2

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter to the Administrative Board and the outcome is Admonish, Probation, Requirement

to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local

sanctions on top of that outcome that may include an unsatisfactory or failing grade for

work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

to the Administrative Board except in cases of repeated acts.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

Problem Set 6: Web Server

3

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

Problem Set 6: Web Server

4

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily

submit this and all other problem sets to be eligible for a satisfactory grade unless granted

an exception in writing by the course’s heads.

Getting Ready

First, join David (hey, that’s me) for a tour of HTTP, the "protocol" via which web browsers

and web servers communicate.

Problem Set 6: Web Server

5

https://www.youtube.com/watch?v=hU4XuBe50K4

Next, consider reviewing some of these examples, via which we introduced HTML forms,

which we used to submit GET queries to Google.

https://www.youtube.com/watch?v=RQ2_TIXBo00

Getting Started

Start up your appliance and, upon reaching John Harvard’s desktop, open a terminal

window (remember how?) and execute

update50

to ensure that your appliance is up-to-date!

Like Problem Set 5, this problem set comes with some distribution code that you’ll need

to download before getting started. Go ahead and execute

cd ~/Dropbox

in order to navigate to your ~/Dropbox directory. Then execute

wget http://cdn.cs50.net/2014/fall/psets/6/pset6/pset6.zip

in order to download a ZIP (i.e., compressed version) of this problem set’s distro. If you

then execute

ls

you should see that you now have a file called pset6.zip in your ~/Dropbox directory.

Unzip it by executing the below.

unzip pset6.zip

If you again execute

https://www.youtube.com/watch?v=hU4XuBe50K4
https://www.youtube.com/watch?v=RQ2_TIXBo00

Problem Set 6: Web Server

6

ls

you should see that you now also have a pset6 directory. You’re now welcome to delete

the ZIP file with the below.

rm -f pset6.zip

Now dive into that pset6 directory by executing the below.

cd pset6

Now execute

tree

(which is a hierarchical, recursive variant of ls), and you should see that the directory

contains the below.

.

|-- public

| |-- cat.html

| |-- cat.jpg

| |-- hello.html

| `-- hello.php

`-- server.c

Dang it, still C. But some other stuff too!

Go ahead and take a look at cat.html with gedit . Pretty simple, right? Looks like it

has an img tag, the value of whose src attribute is cat.jpg .

Next, take a look at hello.html with gedit . Notice how it has a form that’s

configured to submit via GET a text field called name to hello.php . (Make sense?

If not, try taking another look at the walkthrough for search-0.html from Week 7!)

Now take a look at hello.php . Notice how it’s mostly HTML but inside its body is a

bit of PHP code:

Problem Set 6: Web Server

7

<?= htmlspecialchars($_GET["name"]) ?>

The <?= notation just means "echo the following value here". htmlspecialchars ,

meanwhile, is just an attrociously named function whose purpose in life is to ensure that

special (even dangerous!) characters like < are properly "escaped" as HTML "entities."

See http://php.net/manual/en/function.htmlspecialchars.php for more details if curious.

Anyhow, $_GET is a "superglobal" variable inside of which are any HTTP parameters that

were passed via GET to hello.php . More specifically, it’s an "associative array" (i.e.,

hash table) with keys and values. Per that HTML form in hello.html , one such key

should be name ! But more on all that in a bit.

Now the fun part. Open up server.c with gedit .

Yup. You guessed it. The challenge ahead is to implement your own web server that knows

how to serve static content (i.e., files ending in .html , .jpg , et al.) and dynamic content

(i.e., files ending in .php).

But let’s try out the staff’s solution before we dive into the distribution code.

Open up a big terminal window (outside of gedit), as via Menu > Accessories >

Terminal Emulator. Then execute the below.

~cs50/pset6/server

You should see these instructions:

Usage: server [-p port] /path/to/root

Looks a bit complex, but that’s just a conventional way of saying:

• This program’s name is server .

• To specify a (TCP) port number on which server should listen for HTTP requests,

include -p as a command-line argument, followed by (presumably) a number. The

brackets imply that specifying a port is optional. (If you don’t specify, a random port

will be chosen for you.) As an aside, most any number between 1024 (or, even more

properly, 49152) and 65536 should be fine.

http://php.net/manual/en/function.htmlspecialchars.php

Problem Set 6: Web Server

8

• The last command-line argument to server should be the path to your server’s

"root" (the directory from which files will be served).

Let’s try it out. Execute the below from within your own ~/Dropbox/pset6 directory so

that the staff’s solution uses your own copy of public as its root.

~cs50/pset6/server public

You should see output like

Using /home/jharvard/solutions/2014/fall/psets/6/public for server's root

Listening on port #####

where ##### is a random port number. Take note of your appliance’s IP address, which

should be a number of the form #.#.#.# in the appliance’s bottom-right corner. Then,

open up Chrome (inside of the appliance or on your own computer) and visit http://

#.#.#.#:#####/cat.jpg , where, again, #.#.#.# is your appliance’s IP address

(not #.#.#.# literally) and ##### is the random port number. For instance, if your

appliance’s IP address is 1.2.3.4 and the random port number is 1337, you should visit

http://1.2.3.4:1337/cat.jpg .

Anyhow, you should see a happy cat?? In your terminal window, meanwhile, you should

see

GET /cat.jpg HTTP/1.1

which is the "request line" that your browser sent to the server (which is being outputted

by server via printf for diagnostics' sake). Below that you should see

HTTP/1.1 200 OK

which is the server’s response to the browser (which is also being outputted by server

via printf for diagnostics' sake).

Go ahead and stop the server by hitting control-c. Then, re-run it on, say, port 8080 which

is a popular choice when running a webserver without "superuser" privileges. Remember

how? Like this:

Problem Set 6: Web Server

9

~cs50/pset6/server -p 8080 public

Next, just like I did in that short on HTTP, open up Chrome’s developer tools, per the

instructions at https://developer.chrome.com/devtools. Then, once open, click the tools'

Network tab, and then, while holding down Shift, reload the page.

Not only should you see Happy Cat again. You should also see the below in your terminal

window.

GET /cat.jpg HTTP/1.1

HTTP/1.1 200 OK

You might also see the below.

GET /favicon.ico HTTP/1.1

404 Not Found

What’s going on if so? Well, by convention, a lot of websites have in their root directory a

favicon.ico file, which is a tiny icon that’s meant to be displayed a browser’s address

bar or tab. If you do see those lines in your terminal window, that just means Chrome is

guessing that your server, too, might have favicon.ico file. It doesn’t (unless you put

one to public), so not to worry.

Here’s a quick walkthrough if a demo might help.

https://www.youtube.com/watch?v=mRSxes0gwfw

Now try visiting http://#.#.#.#:8080/cat.html . You should see Happy Cat again,

possibly with a bit of a margin around him (simply because of Chrome’s default CSS

properties). If you look at the developer tools' Network tab (possibly after reloading, if

they weren’t still open), you should see that Chrome first requested cat.html followed

by cat.jpg , since the latter, recall, was specified as the value of that img element’s

src attribute that we saw earlier in cat.html . To confirm as much, take a look at the

developer tools' Elements tab, wherein you’ll see a pretty-printed version of the HTML

in cat.html . You can even change it but only Chrome’s in-memory copy thereof. To

change the actual file, you’d need to do so with, say, gedit in the usual way. Incidentally,

you might find it interesting to tinker with the developer tools' Styles tab at right, too. Even

https://developer.chrome.com/devtools
https://www.youtube.com/watch?v=mRSxes0gwfw

Problem Set 6: Web Server

10

though this page doesn’t have any CSS of its own, you can see and change (temporarily)

Chrome’s default CSS properties via that tab.

Okay, one last test. Try visiting http://#.#.#.#:8080/hello.html . Go ahead and

input your name into the form and then submit it, as by clicking the button or hitting

Enter. You should find yourself at a URL like http://#.#.#.#:8080/hello.php?

name=Alice (albeit with your name, not Alice’s), where a personalized hello awaits!

That’s what we mean by "dynamic" content. By submitting that form, you provided input

(i.e., your name) to the server, which then generated output just for you. (That input was

in the form of an "HTTP parameter" called name , the value of which was your name.)

Indeed, if you look at the page’s source code (as via the developer tools' Elements tab),

you’ll see your name embedded within the HTML! By contrast, files like cat.jpg and

cat.html (and even hello.html) are "static" content, since they’re not dynamically

generated.

Take care not to omit the port number from your URLs. Else your browser will end

up talking to the appliance’s own web server (Apache), and you’ll see 403s and 404s that

you’re probably not expecting!

Neat, eh?? Though odds are you’ll find it easier to test your own code via a command line

than with a browser. So let’s show you one other technique.

Open up a second terminal window and position it alongside your first. In the first terminal

window, execute

~cs50/pset6/server -p 8080 public

from within your own ~/Dropbox/pset6 directory, if the server isn’t already running on

that port. Then, in the second terminal window, execute

telnet #.#.#.# 8080

where #.#.#.# is, as before, your appliance’s IP address. telnet is a program via

which you can "communicate with another host" via textual commands. (Back in my day,

too, it was how we checked email!) Anyhow, note that telnet expects a space (not a

colon) between an address and the port.

You should find that telnet is now waiting for input. Go ahead and type

Problem Set 6: Web Server

11

GET /cat.html HTTP/1.1

followed by Enter twice, which telnet will interpret as CRLF CRLF (i.e., \r\n\r\n).

You should see that the server’s responded with a request line, some headers, a blank

line, and some HTML?? Nice! Odds are, whilst debugging your server, you’ll find it more

convenient (and revealing!) to see all of that via telnet than by poking around Chrome’s

developer tools.

Incidentally, take care not to request cat.jpg (or any binary file) via telnet , else you’ll

see quite a mess! (You’re about to try, aren’t you.)

Unfortunately, your own copy of server.c isn’t quite so featureful as the staff’s

solution… yet! Let’s dive into that distribution code. Let’s start with a high-level overview.

https://www.youtube.com/watch?v=L7Xr5b1WwCY

And now a lower-level tour through the code.

server.c

Open up server.c with gedit , if not open already. Let’s take a tour.

• Atop the file are a bunch of "feature test macro requirements" that allow us to use

certain functions that are declared (conditionally) in the header files further below.

• Defined next are a few constants that specify limits on HTTP requests sizes. We’ve

(arbitrarily) based their values on defaults used by Apache, a popular web server. See

http://httpd.apache.org/docs/2.2/mod/core.html if curious.

• Defined next is OCTETS , a constant the specifies how many "octets" we’ll eventually

be reading into buffers at a time. An "octet" is just another word for what we know as a

"byte" (i.e., 8 bits); it’s common nomenclature in the world of networking.

• Next are a bunch of header files, followed by a definition of octet , which we’ve indeed

defined as 8 bits (i.e., a char), followed by some prototypes.

• Finally, just above main are a bunch of global variables. In general, it’s wise to avoid

global variables, but sometimes you can’t. Indeed, as you’ll soon see, this web server

has a "signal handler" that requires that some of the server’s state be global so that it

can thoroughly free memory when a user stops the server by hitting control-c.

https://www.youtube.com/watch?v=L7Xr5b1WwCY
http://httpd.apache.org/docs/2.2/mod/core.html

Problem Set 6: Web Server

12

main

Let’s now walk through main .

• Atop main is an initialization of what appears to be a global variable called errno .

In fact, errno is defined in errno.h and is used by quite a few functions to indicate

(via an int), in cases of error, precisely which error has occurred. See man errno

for more details.

• Shortly thereafter is a call to getopt , which is a function declared in unistd.h that

makes it easier to parse command-line arguments. See man 3 getopt if curious.

Notice how we use getopt (and some Boolean expressions) to ensure that server

is used properly.

• Next notice the call to start (for which you may have noticed a prototype earlier).

More on that later.

• Below that is

signal(SIGINT, handler);

which tells the program to listen for SIGINT (i.e., control-c) and call handler (a

function defined by us elsewhere in server.c) if heard.

• And then main enters an infinite while loop.

Inside of that loop is a call to reset (another function defined by us) that takes

care of freeing some memory and resetting some state in between HTTP requests.

• Thereafter is a call to connected within an if statement. Even though connected

does return true or false , it does so by "blocking," waiting until a browser actually

connects to the server before returning a value.

• After that is a call to parse , which parses a browser’s HTTP request and returns, as

one big string (i.e., char*), its request line and any headers, with each line terminated

by CRLF (i.e., \r\n) instead of just LF (i.e., \n). Per the spec, aka "request for

comments" (RFC), for HTTP, lines in HTTP messages should indeed be terminated by

CRLF (just like text files in Windows). See https://tools.ietf.org/html/rfc7230 if curious.

Note that parse ultimately stores the address of the parsed request in request ,

one of the global variables declared above main .

https://tools.ietf.org/html/rfc7230

Problem Set 6: Web Server

13

• Next is a bunch of code that parses that request, extracting only its request line.

• And then there’s a TODO for you! But more on that in a bit.

• Below the TODO is a bunch of code we wrote that adds support for .php files. It’s a

bit cryptic at first glance, but in a nutshell, all we’re doing, upon receiving a request for,

say, hello.php , is executing a line like

QUERY_STRING="name=Alice" REDIRECT_STATUS=200 SCRIPT_FILENAME=/home/

jharvard/Dropbox/pset6/public/hello.php php-cgi

the effect of which is to pass the contents of hello.php to PHP’s interpreter (i.e.,

php-cgi), with any HTTP parameters supplied via an "environment variable" called

QUERY_STRING . Via load (a function we wrote), we then read the interpreter’s

output into memory (storing the address thereof in a global variable called body ,

which was also declared above main). And then we respond to the browser with

(dynamically generated) output like:

HTTP/1.1 200 OK

Connection: close

Content-Length: 127

X-Powered-By: PHP/5.5.9-1ubuntu4.4

Content-type: text/html

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 hello, Alice </body>

</html>

Perhaps new is our use of popen , memmem , dprintf , and write , but see each’s

man page for details! And know that popen opens a "pipe" to a process (php-

cgi in our case), which provides us with a FILE pointer via which we can read that

process’s standard output (as though it were an actual file). Note, too, that functions like

dprintf and write (and open and read and others) use a "file descriptor" (i.e.,

an int) instead of a FILE pointer (i.e., FILE*) to refer to files. That aside, though,

Problem Set 6: Web Server

14

they’re not all that different from fprintf and fwrite (and fopen and fread

and others). Do just consult man pages for which functions use which.

• Below that code for handling .php files is another TODO for you! But more on that

in a bit too.

And that’s it for main ! Notice, though, that throughout main are a few uses of

continue , the effect of which is to jump back to the start of that infinite loop, where

reset is called. Just before continue in some cases, too, is a call to error (another

function we wrote) with an HTTP status code. Together, those lines (along with others you’ll

write!) allow the server to handle and respond to errors just before returning its attention

to (i.e., blocking for) new requests.

connected

Take a quick peek at connected below main . Don’t fret if unsure how this function

works, but do try to infer from the man pages for memset and accept !

error

Spend a bit more time looking through error , which is that function via which we respond

to browsers with errors (e.g., 404). This function’s a bit longer but perhaps has some more

familiar constructs. Before forging ahead, be sure you’re reasonably comfortable with how

this function works.

load

Recall that load is the function that reads a file into memory (using a global variable

called file that’s declared above main). Read through this one slowly, taking note how

it uses one buffer (buffer) to read a fixed number of octets at a time that it then copies

into a second buffer (the address of which is stored in body , another global variable that’s

declared above main), which it re-sizes as needed via realloc . Long story (nay, long

function!) short, this function reads the entirety of a file (or a pipe) into memory.

handler

Thankfully, a short one! Essentially, this function (called whenever a user hits control-c)

simply calls stop .

Problem Set 6: Web Server

15

lookup

Awww, just a TODO .

parse

Another biggee, albeit pretty similar to load ! This one, though, reads an HTTP request

from a network connection, ultimately throwing away one CRLF and the request’s "body",

if any, preserving only its request line and headers, the address of which is stored in

that global variable called request that’s declared above main . Notice, too, that this

function calls error in a couple of cases.

reset

And now that function called reset , which gets called within that infinite loop within

main . Notice how this function not only frees memory, it also resets some of those global

variables to known values.

start

Here’s that function that started it all (pun intended). Don’t worry if (even with man) you

don’t understand all of its lines, particularly the networking code. But do keep in mind that

start is the function that configures the server to listen for connections on a particular

TCP port!

stop

And stop does the opposite, freeing all memory and ultimately compelling the server to

exit, without even returning control to main .

What To Do

Alright, let’s tackle those TODO s.

lookup

Complete the implementation of lookup in such a way that it returns

• text/css if extension is css (or any capitalization thereof),

Problem Set 6: Web Server

16

• text/html if extension is html (or any capitalization thereof),

• image/gif if extension is gif (or any capitalization thereof),

• image/x-icon if extension is ico (or any capitalization thereof),

• image/jpeg (not image/jpg) if extension is jpg (or any capitalization

thereof),

• text/javascript if extension is js (or any capitalization thereof),

• image/png if extension is png (or any capitalization thereof), or

• NULL otherwise.

main

validate request-line

Per 3.1.1 of http://tools.ietf.org/html/rfc7230, a request-line is defined as

method SP request-target SP HTTP-version CRLF

wherein SP represents a single space () and CRLF represents \r\n . None of

method , request-target , and HTTP-version , meanwhile, may contain SP .

Per 5.3 of the same RFC, request-target , meanwhile, can take several forms, the

only one of which your server needs to support is

absolute-path ["?" query]

whereby absolute-path (which will not contain ?) must start with / and might

optionally be followed by a ? followed by a query , which may not contain " .

Ensure that request-line (which is already stored for you in a variable called line)

is consistent with these rules. If it is not, respond to the browser with 400 Bad Request.

Even if request-line is consistent with these rules,

• if method is not GET , respond to the browser with 405 Method Not Allowed;

• if request-target does not begin with / , respond to the browser with 501 Not

Implemented;

http://tools.ietf.org/html/rfc7230

Problem Set 6: Web Server

17

• if request-target contains a " , respond to the browser with 400 Bad Request;

• if HTTP-version is not HTTP/1.1 , respond to the browser with 505 HTTP Version

Not Supported; or

• if absolute-path does not contain a . (and thus a file extension), respond to the

browser with 501 Not Implemented.

Odds are you’ll find functions like strchr , strcpy , strncpy , and/or strstr of help!

extract query from request-target

Re-define a string called query that contains the query substring from request-

target . If the latter is absent (even if a ? is present), then the string should be "" ,

thereby consuming one byte, whereby query[0] is '\0' .

For instance, if request-target is /hello.php or /hello.php? , then query

should have a value of "" . And if request-target is /hello.php?q=Alice , then

query should have a value of q=Alice .

It’s probably best to ensure that query references memory on the stack, not the heap,

so that you don’t need to worry about freeing it in stop if the user hits control-c.

Odds are you’ll find functions like strchr , strcpy , strncpy , and/or strstr of help!

concatenate root and absolute-path

Re-define a string called path that contains the concatenation of root (a global

variable) and absolute-path .

It’s probably best to ensure that path references memory on the stack, not the heap, so

that you don’t need to worry about freeing it in stop if the user hits control-c.

Odds are you’ll find functions like strcat , strcpy , and/or strncpy of help!

ensure path exists

Ensure that path actually exists. Respond to the browser with 404 Not Found if not!

Odds are you’ll find functions like access and/or stat of help! For the latter, be sure

to consult man 2 stat (i.e., chapter 2) rather than man stat (i.e., chapter 1).

Problem Set 6: Web Server

18

ensure path is readable

Ensure that path is readable. Respond to the browser with 403 Forbidden if not!

Odds are you’ll find functions like access and/or stat of help!

extract path’s extension

Re-define a string called extension that contains the file extension of the file specified

by path (i.e., the substring after the last . in path).

It’s probably best to ensure that extension references memory on the stack, not the

heap, so that you don’t need to worry about freeing it in stop if the user hits control-c.

Odds are you’ll find functions like strchr , strrchr , strcpy , strncpy , and/or

strstr of help!

respond to client

Complete the implementation of support for static content in such a way that, after loading

a file into memory via load , main responds to a browser with these lines

HTTP/1.1 200 OK

Connection: close

Content-Length: %i

Content-Type: %s

each of which is terminated with CRLF (i.e., \r\n), which are followed after a single blank

line (i.e., an additional CRLF) by the bytes of the file itself, whereby %i represents the

file’s size in bytes and %s represents the file’s MIME type.

How to Submit

Step 1 of 2

When ready to submit, open up a Terminal window and navigate your way to ~/Dropbox .

Create a ZIP (i.e., compressed) file containing your entire pset6 directory by executing

the below. Incidentally, -r means "recursive," which in this case means to ZIP up

everything inside of pset6 , including any subdirectories (or even subsubdirectories!).

Problem Set 6: Web Server

19

zip -r pset6.zip pset6

If you type ls thereafter, you should see that you have a new file called pset6.zip

in ~/Dropbox . (If you realize later that you need to make a change to some file and re-

ZIP everything, you can delete the ZIP file you already made with rm pset6.zip , then

create a new ZIP file as before.) * Once done creating your ZIP file, open up Chrome inside

of the appliance (not on your own computer) and visit cs50.harvard.edu/submit2, logging

in if prompted. * Click Submit toward the window’s top-left corner. * Under Problem Set 6

on the screen that appears, click Upload New Submission. * On the screen that appears,

click Add files…. A window entitled Open Files should appear. * Navigate your way

to pset6.zip , as by clicking jharvard, then double-clicking Dropbox. Once you find

pset6.zip , click it once to select it, then click Open. * Click Start upload to upload your

ZIP file to CS50’s servers. * On the screen that appears, you should see a window with

No File Selected. If you move your mouse toward the window’s lefthand side, you should

see a list of the files you uploaded. Click each to confirm the contents of each. (No need

to click any other buttons or icons.) If confident that you submitted the files you intended,

consider your source code submitted! If you’d like to re-submit different (or modified) files,

simply return to cs50.harvard.edu/submit3 and repeat these steps. You may re-submit as

many times as you’d like; we’ll grade your most recent submission, so long as it’s before

the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2014/fall/psets/6/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done!

This was Problem Set 6.

2 https://cs50.harvard.edu/submit
3 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit
https://forms.cs50.net/2014/fall/psets/6/
https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit

	Problem Set 6: Web Server
	Table of Contents
	Objectives
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	server.c
	main
	connected
	error
	load
	handler
	lookup
	parse
	reset
	start
	stop

	What To Do
	lookup
	main
	validate request-line
	extract query from request-target
	concatenate root and absolute-path
	ensure path exists
	ensure path is readable
	extract path’s extension
	respond to client

	How to Submit
	Step 1 of 2
	Step 2 of 2

