
1

Week 2

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Bugs ... 1

2. Announcements ... 4

3. Functions .. 6

4. Representing Strings ... 15

5. Typecasting .. 18

6. References ... 20

1. Bugs

• A bug is a mistake in a program that causes it to behave other than expected. Let’s

look at buggy-0.c 1:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i <= 10; i++)

 printf("*");

}

This sort of bug is called an off-by-one error—starting from i = 0 and continuing

while i <= 10 results in 11 things counted total, rather than 10 as intended.

• So we can change the code like this:

1 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/buggy-0.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/buggy-0.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/buggy-0.c

Week 2

2

#include <stdio.h>

int main(void)

{

 for (int i = 1; i <= 10; i++)

 printf("*");

}

• This is more straightforward for humans, but various constructs in C and other

programming languages are 0-indexed, meaning they start from 0, so we prefer this

version:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 10; i++)

 printf("*");

}

• In buggy-1.c 2 we want to print ten asterisks, one per line:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i <= 10; i++)

 printf("*");

 printf("\n");

}

But this program prints all the stars on the same line:

jharvard@ide50:~/workspace/src2m $./buggy-1

So even though we indented line 7 and 8, the compiler doesn’t understand

indentation—whitespace in our program is entirely for human ease of reading. The

compiler requires curly braces to know what’s the body of the loop and what isn’t.

2 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/buggy-1.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/buggy-1.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/buggy-1.c

Week 2

3

If we only had one line in the body of the loop, however, then the braces would be

optional. In the absence of curly braces, the compiler knows the loop must have

something in the body, so it assumes the next line of code is the body of the loop.

(But we prefer you always use curly braces, especially if you’re new to programming,

because it’s so easy to make this mistake and add an extra line of code without

remembering to add in the curly braces!)

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 10; i++)

 {

 printf("*");

 printf("\n");

 }

}

• Let’s look at the following, loop.c , in which the intent is to print the numbers 0 through

49:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 50; i++)

 {

 printf("i\n");

 }

}

But i is just a character, so this just prints 50 of the letter i !

We need a placeholder, rewriting the printf statement as printf("%i\n", i) ,

so we’re getting the value of the integer variable i , rather than simply the character

i .

What if we accidentally type for (int i = 0; i > 50; i++) instead?

Nothing happens—the body of the loop is never run—because the very first time

the condition is checked, it’s already false!

Week 2

4

• How about this version, with a while loop?

#include <stdio.h>

int main(void)

{

 int i = 0;

 while (i >= 0)

 {

 printf("i\n");

 }

}

This results in an infinite loop because the while condition is initially met, and the

value of i never changes, so the body of the loop is run again and again.

You can kill a program that’s infinitely looping by pressing ctrl-c .

What if we add the line i++; in the body of the loop? Now i is changing, but it’s

still greater than 0, so we should still get an infinite loop, right? Not quite—once we

get to the maximum possible integer, it will loop around to negative numbers, which

will then be less than 0 and terminate the loop (but this takes a long time with 32-

bit integers, and MUCH longer with 64-bit integers!)

2. Announcements

• If you’re interested in participating in YHACK at Yale on November 6th-8th, see

yhack.org3 for details.

• Sections start next week; you should receive an email with your section assignment

(please be patient—this is a very large class—but let us know if you haven’t gotten a

section assignment by next week).

• Study50 provides resources from sections, if you’d like to review material from section,

work ahead, or can’t make it.

• Office hours may vary between weeks, so be sure to check the schedule.

• CS50 Discuss is another resource available to you when you have questions outside

of office hours.

3 http://yhack.org

http://yhack.org
http://yhack.org

Week 2

5

• CS50 Lunches, weekly lunches with CS50 staff and industry friends (at both Harvard

and Yale), will begin soon; you can sign up on the course website, first come first

served.

• Assessment of problem sets will be along the axes of scope (how much of the problem

set did you attempt?), correctness (does it work, per the specification, and without

bugs? This can be tested using check50), design (is your code written well?), and style

(is easy for another human to read, with appropriate indentation and variable names?

See the CS50 Style Guide4 for details).

We score these each on a 5 point scale, with 3 being a good score (and very few

5s given!).

We weigh things according to the following formula, which generally reflects how

much time each aspect takes to get right:

scope x (correctness x 3 + design x 2 + style x 1)

• Academic honesty: CS50 has the most Ad Board cases of any course because the

work is electronic, and as computer scientists we can look for and find cases more

easily.

The syllabus gives the bottom line as "be reasonable" and has further guidelines,

but remember that "the essence of all work that you submit to this course must be

your own."

You may help each other at office hours (and the overworked staff at office hours

appreciate it!) but recall that you may show your broken code to others when looking

for help, but may not view their working code.

For context and transparency, about 30 students were involved with the Ad Board

last fall, and a range of 0–5% of students in the course in the past years.

We compare current submissions to past submissions, code repos, discussion

forums, etc.

• We have a regret clause in the syllabus also:

"If you commit some act that is not reasonable but bring it to the attention of the

course’s heads within 72 hours, the course may impose local sanctions that may
4 http://manual.cs50.net/style

http://manual.cs50.net/style
http://manual.cs50.net/style

Week 2

6

include an unsatisfactory or failing grade for work submitted, but the course will not

refer the matter for further disciplinary action except in cases of repeated acts."

We hope to turn moments of bad decisions into teaching opportunities, rather than

drastic consequences.

Last year, when we introduced the regret clause, 19 students came forward.

7 received no consequences, as the course staff decided they had not actually

crossed a line with the actions they were concerned about.

11 received a 0 score for the pset in question.

1 student was asked to re-do a pset.

Conversations with these students often revealed academic or personal issues

that we could then help students find the resources to solve, so this was one of

the most successful policies the course has ever implemented.

• Let’s break the tension with puppies!5

3. Functions

• Recall that last time we moved beyond main , our default starting function, to write

some of our own functions as well.

• Small programs can be written entirely in main , but as the problems we’re solving

get larger and more interesting, it’s often worthwhile to factor out pieces of logic into

separate functions.

• Let’s open function-0.c 6:

5 http://cs50.harvard.edu/puppies
6 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/function-0.c

http://cs50.harvard.edu/puppies
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/function-0.c
http://cs50.harvard.edu/puppies
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/function-0.c

Week 2

7

#include <cs50.h>

#include <stdio.h>

// prototype

void PrintName(string name);

int main(void)

{

 printf("Your name: ");

 string s = GetString();

 PrintName(s);

}

/**

 * Says hello to someone by name.

 */

void PrintName(string name)

{

 printf("hello, %s\n", name);

}

There are two functions here: main and PrintName . We pulled out the

functionality that PrintName implements into a function as an example of

functional decomposition—breaking a program down into its constituent bits—

and abstraction—building higher-level functionality on top of lower-level code, and

hiding the implementation behind a readable function name.

• Now let’s look at function-1.c 7:

7 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/function-1.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/function-1.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/function-1.c

Week 2

8

#include <cs50.h>

#include <stdio.h>

// prototype

int GetPositiveInt(void);

int main(void)

{

 int n = GetPositiveInt();

 printf("Thanks for the %i!\n", n);

}

/**

 * Gets a positive integer from a user.

 */

int GetPositiveInt(void)

{

 int n;

 do

 {

 printf("Please give me a positive int: ");

 n = GetInt();

 }

 while (n < 1);

 return n;

}

Unlike PrintName in the previous example, GetPositiveInt is not a one-liner

- there’s a little more legwork here, with a do-while loop, which we’re hiding behind

the abstraction GetPositiveInt .

Notice that n is declared on line 18 rather than 22, so it will be accessible within the

entire function. A simple rule of thumb is that a variable can only be used within the

most recent curly braces it’s declared in, so we wouldn’t be able to use n outside of

the do-while loop (or even in the condition of the do-while loop!) if it were declared

inside. Every variable has a scope, or area of the program in which it’s usable,

limited to the area it is declared in, whether it’s an entire function or a loop.

Trying to use a variable outside of its scope results in compiler errors!

Week 2

9

We can declare a variable globally (so that it’s in scope everywhere) by putting it

at the top of the file, outside all curly braces, but we frown upon that for now.

Think about the fact that declaring n globally would mean that it’s defined not just

throughout PrintName but also throughout main , where we have a different

variable called n !

Best design is to choose the narrowest possible scope for your variables.

The int in int GetPositiveInt(void) indicates that the return type of the

GetPositiveInt function is an integer. The void indicates that this function

does not take any input of any type.

Also, note that at the top we have a prototype on line 5, which declares that

GetPositiveInt exists somewhere (and specifies its return and input types).

Without this, main would not be able to refer to the function in line 9. This is

because the compiler goes top to bottom, so without the prototype, the compiler

complains that we’re trying to use a function that hasn’t been declared yet.

One possible solution would be moving the function above main :

Week 2

10

#include <cs50.h>

#include <stdio.h>

/**

 * Gets a positive integer from a user.

 */

int GetPositiveInt(void)

{

 int n;

 do

 {

 printf("Please give me a positive int: ");

 n = GetInt();

 }

 while (n < 1);

 return n;

}

int main(void)

{

 int n = GetPositiveInt();

 printf("Thanks for the %i!\n", n);

}

But stylistically, longer programs will benefit from having main at the top for

convenience and readability.

There may also be situations where two functions both call each other, so it’s

not possible to simply put one on top of the other! Prototypes solve this problem

by letting you declare the function’s signature before actually defining what the

function does.

The header files stdio.h and cs50.h contain prototypes for the functions

they provide.

• In cough-0.c8, we have a C implementation of what we went through in Scratch

before:

8 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-0.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-0.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-0.c

Week 2

11

#include <stdio.h>

int main(void)

{

 // cough three times

 printf("cough\n");

 printf("cough\n");

 printf("cough\n");

}

This involves copy-pasting the printf line three times - bad design!

• In cough-1.c 9, we improve upon this using a loop:

#include <stdio.h>

int main(void)

{

 // cough three times

 for (int i = 0; i < 3; i++)

 {

 printf("cough\n");

 }

}

This could also be implemented using a while loop, but either way, it avoids

having to copy-paste a line of code to make it happen multiple times.

• We can go further and abstract out the printf statement into a function called

cough , in cough-2.c 10:

9 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-1.c
10 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-2.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-1.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-2.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-1.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-2.c

Week 2

12

#include <stdio.h>

// prototype

void cough(void);

int main(void)

{

 // cough three times

 for (int i = 0; i < 3; i++)

 {

 cough();

 }

}

/**

 * Coughs once.

 */

void cough(void)

{

 printf("cough\n");

}

Printing something to the screen is a side effect, so the cough function has a

void return type, and it doesn’t take any input.

• We can make our cough function take an argument and allow it to loop any given

number of times:

Week 2

13

#include <cs50.h>

#include <stdio.h>

// prototypes

void cough(int n);

int main(void)

{

 // cough three times

 cough(3);

}

/**

 * Coughs n times.

 */

void cough(int n)

{

 for (int i = 0; i < n; i++)

 {

 printf("cough\n");

 }

}

• We can also generalize further, as in cough-4.c 11:

11 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-4.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-4.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/cough-4.c

Week 2

14

#include <cs50.h>

#include <stdio.h>

// prototypes

void cough(int n);

void say(string word, int n);

void sneeze(int n);

int main(void)

{

 // cough three times

 cough(3);

 // sneeze three times

 sneeze(3);

}

/**

 * Coughs n times.

 */

void cough(int n)

{

 say("cough", n);

}

/**

 * Says word n times.

 */

void say(string word, int n)

{

 for (int i = 0; i < n; i++)

 {

 printf("%s\n", word);

 }

}

/**

 * Sneezes n times.

 */

void sneeze(int n)

{

 say("achoo", n);

}

Week 2

15

This abstracts out the entire idea of saying a word a given number of times.

The say function takes multiple arguments, separated by a comma.

4. Representing Strings

• Let’s say we want to represent a string for Zamyla’s name. We can place each

character, or char , in its own box:

| Z | a | m | y | l | a |

Each of these boxes represents a one-byte block of memory, and we can access

them individually using some syntax you’ll see in a moment.

• Let’s look at string-0.c 12:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 string s = GetString();

 for (int i = 0; i < strlen(s); i++)

 {

 printf("%c\n", s[i]);

 }

}

• In line 8 we use strlen , a function declared in the header string.h , to get the

length of the string.

• In line 10 we use %c\n to print each character on its own line, and to get each

character, we use s[i] , as in the "box number" of the string s :

12 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/string-0.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/string-0.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/string-0.c

Week 2

16

 s: | Z | a | m | y | l | a |

 0 1 2 3 4 5

• So s[0] would get us Z , s[1] a , and so on, and as i is increased by the for

loop, we will move through the string.

• Now let’s run this program:

jharvard@ide50:~/workspace/src2m $./string-0

Zamyla

Z

a

m

y

l

a

jharvard@ide50:~/workspace/src2m $

• What happens if instead of using strlen , we just assume that nobody will ever have

a name longer than, say, 50 characters?

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 string s = GetString();

 for (int i = 0; i < 50; i++)

 {

 printf("%c\n", s[i]);

 }

}

Now if we type in Zamyla, with this loop we’re asking the program to give us Zamyla’s

name plus a whole bunch of extra bytes of memory. Let’s see what we get:

jharvard@ide50:~/workspace/src2m $./string-0

Zamyla

Z

a

Week 2

17

m

y

l

a

[... many lines of whitespace interspersed with funky characters ...]

jharvard@ide50:~/workspace/src2m $

What if we go really reckless and use 500000 instead of 50 ?

jharvard@ide50:~/workspace/src2m $./string-0

Zamyla

Z

a

m

y

l

a

[... many, MANY lines of whitespace interspersed with funky

 characters ...]

Segmentation fault

jharvard@ide50:~/workspace/src2m $

A segmentation fault means we touched a segment of memory that doesn’t belong

to us. C gives us access to our computer’s entire memory, but a lot of it is being

used for other things!

• There’s a major inefficiency in our for loop above. Let’s look at string-2.c 13:

13 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-2.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-2.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-2.c

Week 2

18

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 string s = GetString();

 // print string, one character per line

 if (s != NULL)

 {

 for (int i = 0, n = strlen(s); i < n; i++)

 {

 printf("%c\n", s[i]);

 }

 }

}

Remember in line 13 we initialize an int i = 0 and increment it by i++ every

time. The condition in string-1.c checks that i < strlen(s) is true in order

to continue the loop, meaning we keep calculating the length of s over and over

again unnecessarily (since the length of Zamyla’s name isn’t changing!)

Now we initialize two variables, i and n , with n holding the length of the string.

Though this version is equally as correct as the first, it is better design as we don’t

need to answer the same question multiple times, and thus improved its efficiency.

Note that we don’t have to say int n since it’s the same type as i and it is

in the same statement.

5. Typecasting

• Typecasting is the ability to convert one datatype to another. Recall that ASCII maps

letters to numbers. Let’s look at ascii-0.c 14:

14 http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/ascii-0.c

http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/ascii-0.c
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/ascii-0.c

Week 2

19

#include <stdio.h>

int main(void)

{

 // display mapping for uppercase letters

 for (int i = 65; i < 65 + 26; i++)

 {

 printf("%c: %i\n", (char) i, i);

 }

 // separate uppercase from lowercase

 printf("\n");

 // display mapping for lowercase letters

 for (int i = 97; i < 97 + 26; i++)

 {

 printf("%c: %i\n", (char) i, i);

 }

}

Line 6 runs through values for 26 letters, starting from 65 because A is 65 in

ASCII, and in line 8 we print a char and an int . It turns out by using (char) i

we can print i out as a char. A type in parentheses prior to the name of a variable

means that variable cast to the type in parentheses.

Changing from A to B can be done by thinking of A as 65 and B as 66 and

adding 1.

The loop below, starting at 97 , prints the lowercase characters in a similar way:

jharvard@appliance (~/Dropbox/src2w): make ascii-0

clang -ggdb3 -O0 -std=c99 -Wall -Werror ascii-0.c -lcs50 -lm -o

 ascii-0

jharvard@appliance (~/Dropbox/src2w): ./ascii-0

A: 65

B: 66

C: 67

...

X: 88

Y: 89

Z: 90

Week 2

20

a: 97

b: 98

c: 99

...

x: 120

y: 121

z: 122

6. References

• We’ve introduced a few header files for libraries at this point, including stdio.h ,

cs50.h , string.h , and ctype.h .

• A useful source of information about the functions in these headers is Reference5015,

which provides both less comfortable explanations and official Linux man page

explanations.

• Next time, we’ll discuss cryptography!

15 http://reference.cs50.net

http://reference.cs50.net
http://reference.cs50.net

	Week 2
	Table of Contents
	1. Bugs
	2. Announcements
	3. Functions
	4. Representing Strings
	5. Typecasting
	6. References

