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1. Announcements

• CS50 Lunch this Friday, 9/25 - RSVP if interested at cs50.harvard.edu/rsvp1.

• Wednesday’s lecture is online only.

• Problem set 2 is out, and we strongly suggest that you start as early as possible! You

never know when you’ll encounter a bug or something that will block you, and much

better to have plenty of time to get unblocked.

2. Searching and Sorting

• Volunteer Alan repeats David’s phone book example, tearing the problem in half

repeatedly to find Mike Smith.

• This method is much faster than reading one page at a time (linear search), but requires

us to leverage the assumption that the phonebook is sorted!

• How do we get something like the phonebook in sorted order?

• Volunteer Caroline sorts a stack of blue books from A-Z by taking each book off the

pile and placing it in the first or second half of the alphabet, then merging the two piles.

• Volunteer Trevor is presented with seven "doors" and tasked to find the number 50

behind one of them.

1  http://cs50.harvard.edu/rsvp

http://cs50.harvard.edu/rsvp
http://cs50.harvard.edu/rsvp
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# Because the inputs (the numbers behind the doors) were in a random order, the

best we can do is to pick doors randomly (or sequentially) to find the number 50 .

# If the inputs are sorted, Trevor notes that 50  is the largest number in the list and

so it’ll be at one end or the other (depending on whether we’ve sorted small-to-big

or big-to-small).

• Last year, volunteer Ajay found 50  in the unsorted list in just one click, which didn’t

quite convey the advantage of sorting…

• In a video from quite a few years ago, we see Sean, another volunteer, search for the

number 7  in a much more linear fashion.

3. Sorting Algorithms

• The algorithms we’ll use for sorting are fundamentally the same whether we have eight,

a thousand, millions, or billions of inputs.

• Eight volunteers come up to represent the numbers 1  through 8 , initially standing in

the following order:

4    2    6    8    1    3    7    5

# We’ll try to formalize how to get them in numerical order.

# We start with a greedy approach (like from Problem Set 1!), solving the local problem

that 4  and 2  are out of order:

2    4    6    8    1    3    7    5

# Continuing by going down and comparing numbers one pair at a time, swapping

them as necessary:

2    4    6    1    8    3    7    5

2    4    6    1    3    8    7    5

2    4    6    1    3    7    8    5

2    4    6    1    3    7    5    8

# We got to the end of the list, but it’s not quite sorted. It is closer than before, though,

because on each swap, a smaller number is moved (or "bubbles") to the left, while

a larger number "bubbles" to the right.
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# Let’s try running through again:

2    4    6    1    3    7    5    8

2    4    1    6    3    7    5    8

2    4    1    3    6    7    5    8

2    4    1    3    6    5    7    8

# We might need to do this a few more times:

2    1    4    3    6    5    7    8

2    1    3    4    6    5    7    8

2    1    3    4    5    6    7    8

# And again:

2    1    3    4    5    6    7    8

1    2    3    4    5    6    7    8

# Because we made a swap on this last pass, let’s run through and do a sanity check

that the numbers are in fact all in order:

1    2    3    4    5    6    7    8

# We made no changes on the last pass, so we can be certain that we’re done and

the list really is sorted!

• This algorithm is called bubble sort, in which we sort pairwise until we can make an

entire pass through the array without making any swaps.

• Let’s try another algorithm, in which we go through the array and pick out the element

we want (starting with the smallest):

4    2    6    8    1    3    7    5

# We don’t find anything smaller than 1 , so we move 1  to the front:

1    2    6    8    4    3    7    5

# We swap the existing value in the first position with the position where we found

the smallest element.
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# We know that 1  is definitely in the right spot, so we can ignore 1  and only consider

the rest of the list when looking for the smallest element

# We continue building up our sorted list at the front, finding the smallest element and

moving it into position:

1    2    6    8    4    3    7    5    // 2 is already in position

1    2    3    8    4    6    7    5    // 3 is moved toward the front

1    2    3    4    8    6    7    5    // 4 is moved toward the front

1    2    3    4    5    6    7    8    // 5 is moved toward the front

# Running through the rest of the list, every time we look for the smallest element

we find that it’s already in position, so we don’t need to move them - just add

them to the part of the list we’ve already sorted.

# This algorithm is called selection sort, because we repeatedly "select" the smallest

element.

• Let’s reset one more time:

4    2    6    8    1    3    7    5

# If we restrict our list to just the first element, we have just the list [4] , which is

trivially sorted (since it only contains one element).

# Let’s go down the list and move each element from the "unsorted" to the "sorted"

portion of the list, making sure to place it correctly in the sorted portion:

4    2    6    8    1    3    7    5    // [4] is sorted

2    4    6    8    1    3    7    5    // we move 2 to in front of 4;

 [2,4] is sorted

2    4    6    8    1    3    7    5    // [2,4,6] is sorted

2    4    6    8    1    3    7    5    // [2,4,6,8] is sorted

1    2    4    6    8    3    7    5    // we move 1 to the beginning;

 [1,2,4,6,8] is sorted

1    2    3    4    6    8    7    5    // we move 3 to its location;

 [1,2,3,4,6,8] is sorted

1    2    3    4    6    7    8    5    // we move 7 to its location;

 [1,2,3,4,6,7,8] is sorted

1    2    3    4    5    6    7    8    // we move 5 to its location;

 the whole list is sorted
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# When we move 1  to the beginning, 2 , 4 , 6 , and 8  all need to shift over (with

similar effects when we move 3 , 7 , and 5  into position), so even though we

pass through the list only once, it still takes quite a few steps.

# This algorithm is called insertion sort, because we take the elements one at a time

and insert them in their correct place in the sorted part of the array.

4. Algorithmic Efficiency

• Let’s see how efficient these algorithms are, starting by looking at the simplest:

# When we do bubble sort, each pass through the list takes n - 1 steps.

# For selection sort, because we select one element on each pass through the list

and remove it from the part of the list we need to consider, each successive pass

takes one step fewer:

(n - 1) + (n - 2) + ... + 1

# This is equal to n(n - 1)/2 = (n2 - n)/2 = n2/2 - n/2

• The largest term in this expression is the n2 part - as n gets larger, this term will

dominate.

# If we plug 1,000,000  in for n, we get 1,000,0002/2 - 1,000,000/2 =

500,000,000,000 - 500,000 = 499,999,500,000

# 499,999,500,000  is pretty much equal to 500,000,000,000 !

# Therefore, we say that this formula is on the order of n2, or O(n2).

• This big-O notation is used in computer science to denote an upper bound on how

long an algorithm takes to run.

# Some examples of common running times for the kinds of algorithms we’ve seen or

will see soon in this course are O(n2), O(n log n), O(n), O(log n), and O(1).

• So selection sort is O(n2) - and it turns out that bubble sort and insertion sort have

the same worst-case sorting time.

# What’s the best case for insertion sort? If our list is already sorted, we only need

to pass through the list once to check that everything is already sorted - so only n

steps are required. But in the worst case, if the list is reversed, we have to slide

everything over for every new element we add to the sorted list:
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1 + 2 + ... + (n - 2) + (n - 1)

# This is equivalent to our expression for the efficiency of selection sort above, so

insertion sort is also O(n2).

# As mentioned before, each pass through the list for bubble sort takes n - 1 steps,

and if the list is completely reversed, it takes n passes through the list to sort it, so

bubble sort is also O(n2).

• What’s an algorithm we’ve seen that takes O(n) steps? Our initial, one-page-at-a-time

algorithm for finding Mike Smith in the phonebook is O(n), or linear time. (Note that

two, ten, or more pages at a time would still be O(n), even if faster in real time, because

running time would still grow linearly with the number of pages in the phonebook!)

# Taking attendance by counting everyone in the room individually is also O(n).

• Our divide-and-conquer method of finding Mike Smith in the phonebook, which we’ll

call binary search, is O(log n), or logarithmic time.

• Any algorithm with a fixed number of steps regardless of the length of input is O(1),

or constant time (not necessarily just one step, but a constant number of steps that

doesn’t depend on n).

• Another metric besides big-O that we’ll care about is Ω, or big-omega, which refers to

the lower bound on the running time of an algorithm.

# Selection sort always takes on the order of n2 steps, even if the list is already sorted,

so it’s both O(n2) and Ω(n
2).

# Bubble sort and insertion sort both only need to pass through the array once if it

starts out sorted, so although they’re also O(n2), they’re both Ω(n).

• This online demo2 shows various sorting algorithms, such as bubble sort, moving bars

in order of length. The longer bars "bubble" to the right, and the shorter bars "bubble"

to the left. (It may or may not work on your computer, unfortunately, as browser support

for Java applets like this is now pretty rare.)

• Another demo3 compares how long various algorithms take, and shows that although

these O(n2) sorting algorithms may feel pretty fast, they’re much, much slower than

2  http://cs.smith.edu/~thiebaut/java/sort/demo.html
3  http://cglab.ca/~morin/misc/sortalg/

http://cs.smith.edu/~thiebaut/java/sort/demo.html
http://cglab.ca/~morin/misc/sortalg/
http://cs.smith.edu/~thiebaut/java/sort/demo.html
http://cglab.ca/~morin/misc/sortalg/
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merge sort, an algorithm with a better big-O running time that we’ll discuss in more

detail later.

• Finally, we watch what different sorting algorithms sound like4 to get a feel for them

in another way.

4  http://youtu.be/t8g-iYGHpEA

http://youtu.be/t8g-iYGHpEA
http://youtu.be/t8g-iYGHpEA

	Week 3
	Table of Contents
	1. Announcements
	2. Searching and Sorting
	3. Sorting Algorithms
	4. Algorithmic Efficiency

