
1

Week 3, continued

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Introduction .. 1

2. Merge Sort ... 1

3. Compiling ... 9

4. Bitwise Operators ... 10

1. Introduction

• Today’s lecture comes to you filmed in Hauser Studio in Widener Library.

• Because of the green screen in this studio, CS50’s production team can put any

background they want behind David (like a bunch of adorable puppies).

• Looking ahead to Problem Set 3, you’ll be implementing the Game of Fifteen, which

you might have played on a physical plastic puzzle as a child.

In the Hacker edition, you’ll be tasked to not only make it possible for a user to play

the Game of Fifteen, but also to implement God Mode, which solves the puzzle for

the user!

2. Merge Sort

• Recall from last lecture that we had several sorting algorithms (bubble sort, selection

sort, insertion sort) that all run in O(n2).

• We also showed an example of merge sort, which runs much faster, and which

we’ve teased leverages the same sort of divide-and-conquer logic as our binary search

method of finding Mike Smith in the phonebook.

• Thinking back to the pseudocode from week 0:

Week 3, continued

2

pick up phone book

open to middle of phone book

look at names

if "Smith" is among names

 call Mike

else if "Smith" is earlier in book

 open to middle of left half of book

 go to line 3

else if "Smith" is later in book

 open to middle of right half of book

 go to line 3

else

 give up

Notice how we have an iterative, or looping, approach with lines 8 and 11, where

we go back to line 3 and repeat the process again and again.

• But let’s simplify this and change the nature of our program:

pick up phone book

open to middle of phone book

look at names

if "Smith" is among names

 call Mike

else if "Smith" is earlier in book

 search for Mike in left half of book

else if "Smith" is later in book

 search for Mike in right half of book

else

 give up

Now we seem to have an incomplete instruction. How do we search for Mike

in lines 7 and 10? Well, we just use this exact same program, starting at the top.

Lines 4 and 12 makes sure that the program will end. With lines 7 and 10, we have

a recursive algorithm that "calls" itself.

• Using recursion, we can express merge sort as follows:

On input of n elements

Week 3, continued

3

 if n < 2

 return

 else

 sort left half of elements

 sort right half of elements

 merge sorted halves

• The base case - if n < 2 - ensures we don’t loop forever, because a list of 0

elements or of 1 element is trivially sorted.

• It seems like this can’t possibly be enough information to sort a list, but remember that

sort left half of elements and sort right half of elements are

recursive calls to this same algorithm!

• Consider a list of eight elements, which we’ll now envision as stored in an array:

| 4 8 6 2 1 7 5 3 |

• So let’s run through merge sort. We first need to sort left half of elements ,

so we divide the list of 8 elements in half:

| 4 8 6 2 | 1 7 5 3 |

• In order to sort the left half, we start over from the beginning of the algorithm, and again

proceed to the else block, which means we are sorting the left half of the left half:

| 4 8 | 6 2 | 1 7 5 3 |

• We call the algorithm again, but this time we have just one element, 4, so the base

case is called - [4] , this list of size 1, is already sorted. We move on to 8, which is

also sorted by itself:

| 4 | 8 | 6 2 | 1 7 5 3 |

Week 3, continued

4

| 4 | 8 | 6 2 | 1 7 5 3 |

• Now the left half of our list [4,8] is sorted and the right half is sorted, so we need

to merge the two halves.

First, we allocate some additional memory, big enough to fit the secondary list.

| 4 | 8 | 6 2 | 1 7 5 3 |

| |

| | 8 | 6 2 | 1 7 5 3 |

| 4 | // bring the 4 forward

| | | 6 2 | 1 7 5 3 |

| 4 8 | // and then the 8

| 4 8 | 6 2 | 1 7 5 3 | // now the left half of the left half

 is sorted

• The next step is to mentally rewind and remember that we need to sort the right half of

the left half, since we just sorted the left half of the left half. So the same process takes

place; [6] and [2] are already sorted, so we merge these two lists:

| 4 8 | 6 | 2 | 1 7 5 3 |

 | | // allocate some more memory

Week 3, continued

5

| 4 8 | 6 | | 1 7 5 3 |

 | 2 | // bring down the 2 first

| 4 8 | | | 1 7 5 3 |

 | 2 6 | // then the 6

| 4 8 | 2 6 | 1 7 5 3 |

| | // now we merge the 2 halves of 2 elements each

| | | 1 7 5 3 |

| 2 4 6 8 | // bring down the 2, then 4, then 6, then 8

• We return to the right half and quickly repeat the same process (and again remember

that we need to bring merged elements forward before putting them back in the list):

| 2 4 6 8 | 1 7 5 3 | // sort right half

| 2 4 6 8 | 1 7 | 5 3 | // sort left half of right half

| 2 4 6 8 | 1 | 7 | 5 3 | // 1 is sorted

Week 3, continued

6

| 2 4 6 8 | 1 | 7 | 5 3 | // 7 is sorted

 | | // more memory

| 2 4 6 8 | | | 5 3 |

 | 1 7 | // bring down 1, then 7

| 2 4 6 8 | 1 7 | 5 | 3 | // 5 and 3 are sorted

 | | // more memory

| 2 4 6 8 | 1 7 | | |

 | 3 5 | // bring down 3, then 5

| 2 4 6 8 | 1 7 | 3 5 | // merge halves of right half

 | |

| 2 4 6 8 | | |

 | 1 3 5 7 | // bring down 1, then 3, then 5, then 7

Week 3, continued

7

• By recursively calling this algorithm, we’ve sorted both halves, and we can merge them

just as we’ve done within each half:

| 2 4 6 8 | 1 3 5 7 | // merge left and right half

| |

| 2 4 6 8 | 3 5 7 | // 1 is smallest, so we bring it down

| 1 |

| 4 6 8 | 3 5 7 | // now 2

| 1 2 |

| 4 6 8 | 5 7 | // then 3

| 1 2 3 |

| | | // and so on, taking smaller option

 until entire list is sorted

| 1 2 3 4 5 6 7 8 |

• If we look back at the structure we’ve moved through, we can see the divide-and-

conquer nature of this algorithm:

Week 3, continued

8

| | | | | | | | |

| | | | |

| | |

| |

• Recalling the logarithmic running time of our divide-and-conquer search algorithm

(binary search), we can see that there’s something of a logarithmic nature to merge

sort, although it’s not just log n.

• Note that when we talk about log n in this class, we’re referring to log2 n, not log10 n or

ln n as you may be familiar with from math classes (although when we discuss big-O

logarithmic running time, these are all equivalent, because logs of different bases can

be interconverted with a constant and constants are irrelevant in big-O).

• We divided our input in half log(n) times - with 8 numbers, this is log2 (8), or 3 divisions.

• Each time we split the list, we had to merge n elements together (touching all 8 elements

at each level to order the sublists correctly).

• With log n stages, and n steps of work in each stage, merge sort has a total of Ο(n
log n) running time.

• Recall that bubble sort, insertion sort, selection sort and so on all run in O(n2) time,

so just as our O(log n) search algorithm was much faster than linear, or O(n), search,

merge sort is much faster than our previous sort algorithms.

• Let’s look back at our algorithm and express some of this more formally:

On input of n elements

 if n < 2

 return

 else

Week 3, continued

9

 sort left half of elements

 sort right half of elements

 merge sorted halves

Our base case, if n < 2, return , runs in constant time, or O(1) - some fixed

number of steps regardless of the value of n.

This means we can say that T(n) (the running time of our algorithm given an input

of size n) is equal to O(1) if n < 2.

• What about in the else case? How long does each of those steps take?

On input of n elements

 if n < 2

 return

 else

 sort left half of elements

 sort right half of elements

 merge sorted halves

If the running time of sorting the whole list is some T(n), then sorting the left half

runs in T(n/2), as does the right half.

Merging the sorted halves takes O(n), because we have to touch every element as

we merge.

Combining these, when n is greater than or equal to 2, we have the following:

T(n) = T(n/2) + T(n/2) + O(n)

This formula, if calculated out to a closed form, gives O(n log n) - you’re not

responsible for the precise mathematical details.

• In this video1, then-Senator Obama is asked what would be the most efficient way to

sort a million 32-bit integers, and responds that "bubble sort would be the wrong way

to go."

3. Compiling

• Recall our simple C program from previous weeks:

1 https://www.youtube.com/watch?v=k4RRi_ntQc8

https://www.youtube.com/watch?v=k4RRi_ntQc8
https://www.youtube.com/watch?v=k4RRi_ntQc8

Week 3, continued

10

#include <stdio.h>

int main(void)

{

 printf("hello, world\n");

}

• We previously said that when we compile this program, our source code is turned by the

compiler into object code, composed of 0s and 1s that the computer can understand.

• Turns out there are some intermediate steps! Our code is first turned into assembly

code, composed of simple machine instructions that interact with memory directly.

• So, our process now looks as follows: source code (e.g., hello.c) is compiled into

assembly code (hello.s), which is then assembled into object code (hello.o).

• clang , like many compilers, performs all these steps together, and typically does not

output the intermediate files.

• When we call a function declared in a library, like printf in stdio.h , we have to

pull in the actual code of that function from a file stdio.c .

This code has already been compiled and assembled into an object code-like

format.

After our code has been compiled and assembled into object code, the object code

for any libraries we’re using has to be linked with our object code to create an

executable file.

• So the full process consists of the source code hello.c being compiled into assembly

code, hello.s , which is then assembled into object code, hello.o , which is then

linked with stdio.o (or other object code-like library files, depending on which header

files you’ve included with #include in your source code) to produce an executable

that you can run as ./hello .

4. Bitwise Operators

• Thus far, we’ve dealt with data of type char , int , float and so on, but all of these

data types are at least 8 bits - we haven’t been manipulating individual bits (0 or 1).

• C does let us access and manipulate individual bits using specific syntax:

Week 3, continued

11

& | ^ ~ << >>

& is bitwise AND (not to be confused with && , logical AND), which gives 1 if both

of its arguments are 1 .

0 & 0 is equal to 0 .

0 & 1 is equal to 0 .

1 & 0 is equal to 0 .

1 & 1 is equal to 1 .

| is bitwise OR (not to be confused with || , logical OR), which gives 1 if at least

one of its arguments is 1 .

0 | 0 is equal to 0 .

0 | 1 is equal to 1 .

1 | 0 is equal to 1 .

1 | 1 is equal to 1 .

^ is bitwise XOR, or exclusive or, which gives 1 if exactly one of its arguments

is 1 .

0 ^ 0 is equal to 0 .

0 ^ 1 is equal to 1 .

1 ^ 0 is equal to 1 .

1 ^ 1 is equal to 0 .

~ is bitwise NOT, which is a unary operator - unlike the above, it operates on only

one argument, rather than a pair. It flips the given bit:

~0 is equal to 1 .

~1 is equal to 0 .

<< is the left shift operator.

1 << 7 is equal to 10000000 - the 1 is shifted to the left 7 places, and the

places to the right are padded with `0`s.

We’ll see some more clever uses of this operator as well!

	Week 3, continued
	Table of Contents
	1. Introduction
	2. Merge Sort
	3. Compiling
	4. Bitwise Operators

