
1

Week 4, continued

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Files, Headers, and Hex .. 1

2. Structs .. 4

3. Quick Reminder ... 9

4. Strings and Pointers .. 9

5. Memory Allocation ... 15

1. Files, Headers, and Hex

• Depictions of trying to recover digital information in TV and movies often look like this1,

where characters say phrases like "zoom" and "enhance," that magically cause images

to reveal details previously unseen.

Sorry if we ruin some TV and movies for you, as you’ll now be able to recognize

when characters that are supposedly computer experts are making no sense at all.

• If we really try to "enhance" images, like that of TF Mary, we eventually see the pixels

that compose the image, because there are only a finite number of bits in the image.

(The bad guy in the reflection in his eye will only be 6 pixels, no matter how far we

try to zoom!)

We can try to smooth so the image looks less pixellated, but there’s still no more

information in the photo than was contained in the original pixels.

• One of the topics for today is digital forensics, recovering information, and Problem Set

4 will be in this domain. You’ll be manipulating and generating image files with file I/

O, where I/O just means input/output. None of the programs we’ve worked with so far

have been saving to disk by creating or changing files.

• One way to represent an image is with a bitmap, or BMP:

1 http://youtu.be/LhF_56SxrGk

http://youtu.be/LhF_56SxrGk
http://youtu.be/LhF_56SxrGk

Week 4, continued

2

11000011

10111101

01011010

01111110

01011010

01100110

11000011

If we use 0 to represent black and 1 to represent white (which is standard), this

bitmap produces a smiley face.

• What if we want to implement color? With 1 bit, we can only represent two states (black

or white). To represent more states, we need more bits per pixel (sometimes 8, more

commonly 24).

• JPEG is a file format you’ve likely used if you’ve ever taken a photo or looked at one

on Facebook.

You’ll be working with JPEGs on Problem Set 4 to recover photos from a camera

memory card that David accidentally deleted.

• Even complex file formats like JPEGs can typically be identified by certain patterns

of bits. Different file types, like a JPEG or a PNG (image file) or a GIF (image file) or

a Word document or a Excel spreadsheet, will have different patterns of bits, called

signatures, and those patterns are usually at the top of the file, so when a computer

opens it, it can recognize, say, a JPEG as an image, and display it to the user as a

graphic. Or, it might look like a Word doc, so let’s show it to the user as an essay.

• For instance, the first three bytes of a JPEG are:

 255 216 255

• We’ve written these in decimal above, and we’ve worked with binary before, but

computer scientists actually tend to express numbers in hexadecimal, as opposed to

decimal or binary.

• Recall that decimal uses 10 digits, 0-9, while binary is composed of 2 digits, 0 and 1.

• Hexadecimal means that we will have 16 such digits, 0-9 and a, b, c, d, e, f.

"a" is 10, "b" is 11, and so on.

Week 4, continued

3

• How can this be useful? Well let’s write out the bits that represent these numbers:

 255 216 255

 11111111 11011000 11111111

• This is interesting because a byte has 8 bits, and if we break each byte into two chunks

of 4 bits, each set of 4 bits will correspond to exactly one hexadecimal digit:

 255 216 255

 1111 1111 1101 1000 1111 1111

 f f d 8 f f

• To make this more readable, we remove the whitespace and add 0x , just to signify

that the characters in the last row are in hexadecimal:

 255 216 255

 1111 1111 1101 1000 1111 1111

 f f d 8 f f

 0xff 0xd8 0xff

• Note that we can also convert two hexadecimal digits to 8 bits in binary, or one byte,

making it especially useful for representing binary data.

• So you’ll be looking in Problem Set 4 not for the decimal numbers 255 , 216 , 255 ,

but for the hexadecimal bytes 0xff , 0xd8 , 0xff .

• The debugger we’ve been working with in the CS50 IDE, gdb , might show you values

in hexadecimal rather than decimal or binary.

• Another image file format that we referred to vaguely earlier is a bitmap file, BMP. One

example of an image in that format is bliss.bmp , a very familiar rolling green hill set

against a blue cloudy sky (the default Windows XP wallpaper on millions of PCs).

As an aside, the scene in the Windows XP wallpaper2 is now yellow and gloomy -

or it was when someone went back to get another photo3!

• What’s interesting, though, is that its beginnings are more than just a few bytes. Its

header has a whole bunch of numbers, bytes, with their orders and values determined

years ago by its author, Microsoft. Indeed, Microsoft has named the types of those

2 http://en.wikipedia.org/wiki/Bliss_(image)
3 http://en.wikipedia.org/wiki/Bliss_(image)#mediaviewer/File:Bliss_(location).jpg

http://en.wikipedia.org/wiki/Bliss_(image)
http://en.wikipedia.org/wiki/Bliss_(image)#mediaviewer/File:Bliss_(location).jpg
http://en.wikipedia.org/wiki/Bliss_(image)
http://en.wikipedia.org/wiki/Bliss_(image)#mediaviewer/File:Bliss_(location).jpg

Week 4, continued

4

values things like WORD and DWORD and LONG , but those are simply data types like

int , different names for the same thing.

• So when someone clicks on a BMP file, the image is only shown because the operating

system (or image-viewing program, really) noticed all of these bits at the beginning of

the file and recognized that it was a BMP. More on this later.

• All files are just 0s and 1s under the hood, and humans have defined conventions of

what patterns of bits correspond to what kinds of data.

2. Structs

• C only has a couple more features that we haven’t already discussed, one of which

is called a struct.

• Let’s say we want a variable to represent a student, with values such as name, age/

birthdate, ID number, etc associated with it. How might we represent that student in

code?

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 string name;

 string dorm;

 int id;

 // do something with these variables

}

• What if we want to store two students?

Week 4, continued

5

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 string name;

 string dorm;

 int id;

 string name2;

 string dorm2;

 int id2;

 // do something with these variables

}

• Wait, but we’ve already solved this problem of copy-pasting before - we can use an

array instead.

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 string names[3];

 string dorms[3];

 int ids[3];

 // do something with these variables

}

• But this is still pretty unwieldy - we don’t really care about individual id numbers, just

about the collection of data associated with a student, so it would be better if we could

define a variable that somehow represented a student so then we could do things like

this directly:

Week 4, continued

6

student s;

student t;

student class[3];

• We can use a higher-level data structure to hold something of a type student , and

we see an example of this in structs.h 4:

#include <cs50.h>

// structure representing a student

typedef struct

{

 string name;

 string house;

}

student;

• The keywords typedef and struct on line 4 just mean define a type — a structure — that

is a container for multiple things, and inside that structure will be a string called

name and a string called house , and the entire structure will be called student

for convenience.

The convention is to put typedefs like this into a separate header (or .h) file.

To #include a header file from the current directory, rather than one installed on

your system, we use #include "filename.h" (with double-quotes) rather than

#include <stdio.h> (with angle brackets).

• student is now a data type just like int and string and GRect and others.

• Now we can do something like this, in structs-0.c 5:

4 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs.h
5 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs-0.c

http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs.h
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs-0.c
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs.h
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs-0.c

Week 4, continued

7

#include <cs50.h>

#include <stdio.h>

#include <string.h>

#include "structs.h"

// number of students

#define STUDENTS 3

int main(void)

{

 // declare students

 student students[STUDENTS];

...

Note that we have an array named students , with each element of the type

student . There are STUDENTS (which we’ve defined as a constant in line 8 to

be 3 , using #define) elements in the students array.

• How do we access name and house and other fields, or items, in a struct ?

...

int main(void)

{

 // declare students

 student students[STUDENTS];

 // populate students with user's input

 for (int i = 0; i < STUDENTS; i++)

 {

 printf("Student's name: ");

 students[i].name = GetString();

 printf("Student's house: ");

 students[i].house = GetString();

 }

...

• We index into the array in line 11, and use a new syntax of .name to get the field

called name .

Week 4, continued

8

• Now in structs-1.c 6, we bring files into the picture:

...

 // save students to disk

 FILE* file = fopen("students.csv", "w");

 if (file != NULL)

 {

 for (int i = 0; i < STUDENTS; i++)

 {

 fprintf(file, "%s,%s\n", students[i].name, students[i].dorm);

 }

 fclose(file);

 }

 // free memory

 for (int i = 0; i < STUDENTS; i++)

 {

 free(students[i].name);

 free(students[i].dorm);

 }

}

• We open a new file called students.csv for writing (hence the "w" argument),

and then write the students' information to the file using fprintf - just like printf ,

but for printing to files rather than directly to the terminal.

• We’ll come back to this, but NULL is a special value that can be returned by functions

if something has gone wrong, so checking that file != NULL is just conventional

error checking.

• We then fclose the file and free the memory used by the students' information

(more on this later as well).

• If we compile and run this program, we’ll see that the file is indeed created with the

contents we expect:

jharvard@ide50:~/workspace/src4w $./structs-1

Student's name: Andi

Student's dorm: Berkeley

Student's name: Rob

6 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs-1.c

http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs-1.c
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/structs-1.c

Week 4, continued

9

Student's dorm: Thayer

Student's name: Maria

Student's dorm: Mather

jharvard@ide50:~/workspace/src4w $ ls

[... other files ...]

students.csv

And if we open students.csv , we see that it now contains:

Andi,Berkeley

Rob,Thayer

Maria,Mather

• If we run the program again, we’d overwrite this file, because we opened this in "w"

mode. If we instead wanted to add to the end, we could use fopen in "a" (append)

mode instead.

• CSVs are useful because they can be opened natively by any standard spreadsheet

program, but are not a proprietary format like .xls .

• This is a stepping stone to being able to persist information permanently, and you’ll see

a lot more of this on Problem Set 4.

3. Quick Reminder

• CS50 Lunch is Friday at 1:15pm as usual, RSVP at http://cs50.harvard.edu/rsvp.

4. Strings and Pointers

• We took some training wheels off on Monday, revealing that string doesn’t exist -

it’s actually an alias for char* that we’ve created for you in the CS50 Library.

• Let’s look back at compare-0.c 7:

7 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/compare-0.c

http://cs50.harvard.edu/rsvp
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/compare-0.c
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/compare-0.c

Week 4, continued

10

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 string s = GetString();

 // get another line of text

 printf("Say something: ");

 string t = GetString();

 // try (and fail) to compare strings

 if (s == t)

 {

 printf("You typed the same thing!\n");

 }

 else

 {

 printf("You typed different things!\n");

 }

}

• Recall that this didn’t behave as expected:

jharvard@ide50:~/workspace/src4w $./compare-0

Say something: mom

Say something: mom

You typed different things!

• We clarified that strings are actually stored by their addresses in memory, rather than

the actual sequence of characters. So now if we look at the code of compare.c :

...

 // try (and fail) to compare strings

 if (s == t)

 {

 printf("You typed the same thing!\n");

 }

...

Week 4, continued

11

• we see that this fails since s and t are pointing to different addresses, since t is

another string , and we’re comparing the locations rather than the first character of

each one, then the next, and so on.

• So let’s fix this problem. If we had to implement it ourselves, we might iterate through

the two strings, comparing letters one at a time, until we reached the end of one

or both of them. But we don’t need to, thanks to the strcmp function as shown in

compare-1.c 8:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 char* s = GetString();

 // get another line of text

 printf("Say something: ");

 char* t = GetString();

 // try to compare strings

 if (s != NULL && t != NULL)

 {

 if (strcmp(s, t) == 0)

 {

 printf("You typed the same thing!\n");

 }

 else

 {

 printf("You typed different things!\n");

 }

 }

}

• Now we’ve made it clear that the string variables are actually char* variables,

meaning that they will contain an address, not a string. GetString() doesn’t return

8 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/compare-1.c

http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/compare-1.c
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/compare-1.c

Week 4, continued

12

a string directly, in the sense of a sequence of characters; it returns the address in

memory of a string. Again, we’re checking that neither of these is NULL .

One reason GetString() might return NULL is if the user provided too long a

string and the program ran out of memory to store it in.

• Notice that we use strcmp in line 18, which will return a negative number, or a

positive number, or zero. Zero would mean that they are equal, and a positive or

negative number would mean something like greater than or less than, if you wanted

to alphabetize those strings.

• Now we can compare as we intend:

jharvard@ide50:~/workspace/src4w $./compare-1

Say something: mom

Say something: mom

You typed the same thing!

jharvard@ide50:~/workspace/src4w $./compare-1

Say something: mom

Say something: Mom

You typed different things!

• Let’s open copy-0.c 9:

9 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/copy-0.c

http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/copy-0.c
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/copy-0.c

Week 4, continued

13

#include <cs50.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 string s = GetString();

 if (s == NULL)

 {

 return 1;

 }

 // try (and fail) to copy string

 string t = s;

 // change "copy"

 printf("Capitalizing copy...\n");

 if (strlen(t) > 0)

 {

 t[0] = toupper(t[0]);

 }

 // print original and "copy"

 printf("Original: %s\n", s);

 printf("Copy: %s\n", t);

 // success

 return 0;

}

• So in lines 10-14 we get a string s and check that it’s not NULL in case something

went wrong. Otherwise, we might start going to invalid addresses in memory, and cause

more and more problems.

• We try to copy the string in line 17, and capitalize the first character of t , t[0] , in

line 23. Then we print both strings.

• Let’s run copy-0 :

jharvard@ide50:~/workspace/src4w $./copy-0

Week 4, continued

14

10 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/copy-1.c

http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/copy-1.c

Week 4, continued

15

Say something: mom

Capitalizing copy...

Original: Mom

Copy: Mom

• Both the original and the copy appear to have been capitalized. But what’s really

happening, and where is the bug? Let’s go back to line 17, where we set string t

to s :

string t = s;

 ------ ------

 |0x50| |0x50|

 ------ ------

• So we’re setting t to point to the same address as s , but that just means when we

change t[0] , the first letter in t , we also change s[0] since s points to the same

thing:

string t = s;

 ------ ------

 |0x50| |0x50|

 ------ ------

 ... | m | o | m |\0 | | | |

 0x50

 =>

 ... | M | o | m |\0 | | | |

 0x50

Since both strings point to the same chunk of memory, both see the change.

5. Memory Allocation

• To fix this problem, we need another chunk of memory to put the copy in. See

copy-1.c 10:

http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/copy-1.c

Week 4, continued

16

#include <cs50.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 char* s = GetString();

 if (s == NULL)

 {

 return 1;

 }

 // allocate enough space for copy

 char* t = malloc((strlen(s) + 1) * sizeof(char));

 if (t == NULL)

 {

 return 1;

 }

 // copy string, including '\0' at end

 for (int i = 0, n = strlen(s); i <= n; i++)

 {

 t[i] = s[i];

 }

 // change copy

 printf("Capitalizing copy...\n");

 if (strlen(t) > 0)

 {

 t[0] = toupper(t[0]);

 }

 // print original and copy

 printf("Original: %s\n", s);

 printf("Copy: %s\n", t);

 // free memory

 free(s);

 free(t);

 // success

 return 0;

}

Week 4, continued

17

• This looks really complicated, but let’s talk about the concept first. We’ll use a loop to

copy it character by character, but now we need to explicitly allocate memory for t :

char* t = malloc((strlen(s) + 1) * sizeof(char));

char* s = GetString();

 ------ -----------------

 |0x50| | m | o | m |\0 |

 ------ -----------------

 0x50

char* t

 ------ -----------------

 |0x88| | |

 ------ -----------------

 0x88

We allocate enough memory for strlen(s) + 1 chars, because we need a

space for the \0 character. (Although a char is essentially always 1 byte, we

use the operator sizeof to make sure that we’re allocating enough space even if

we were on a system that used more than 1 byte per char. This is more relevant if

we were allocating space for a type like int that’s more likely to take up different

amounts of space on different systems.)

• Now we can access the memory as an array in a for loop, reproduced below:

 // copy string, including '\0' at end

 for (int i = 0, n = strlen(s); i <= n; i++)

 {

 t[i] = s[i];

 }

We can do this because each string is stored with characters next to one another,

so we can access them with this array notation.

• To recap, a string all this time was just an address of a character, a pointer, which

in turn is just a number, that we conventionally write in hexadecimal.

• We also check if t == NULL because we might ask for more memory than malloc

is able to give.

Week 4, continued

18

• And one final thing, if we return to what we were just looking at, we can replace line

4 below with line 5:

 // copy string, including '\0' at end

 for (int i = 0, n = strlen(s); i <= n; i++)

 {

 // t[i] = s[i];

 *(t + i) = *(s + i);

 }

The * symbol can actually be used for two purposes. We’ve seen char* t = …

 which is declaring that t is a pointer to a char , but if we use * without a word

like char in front of it, it becomes a dereference operator. That just means "go

there" - if an address, like 33 Oxford Street, was written on paper like *(33 Oxford

Street), then we would just go there.

t is the address of the new piece of memory, and s is the address of the original

piece, and i goes from 0 to 1 to 2 to 3 etc, so t + i is just another number,

since these are all addresses with number values.

This method of moving around in memory is called pointer arithmetic, because

we’re doing math directly on addresses (by taking advantage of the fact that when

we store a string, or when malloc gives us a chunk of memory, the addresses

in that chunk of memory are consecutive!). This is just like if we were given *(33

Oxford Street + 1) to mean "go to the address one after 33 Oxford Street", so we’d

go to 34 Oxford Street.

So on the first pass of the loop, with i = 0 , we’re going to copy m from 0x50

to 0x88 :

char* s = GetString();

 ------ -----------------

 |0x50| | m | o | m |\0 |

 ------ -----------------

 0x50

char* t

 ------ -----------------

 |0x88| | m | | | |

 ------ -----------------

Week 4, continued

19

 0x88

On the next pass, i = 1 , we’ll copy a from 0x50 + 1 , 0x51 , to 0x88 + 1 ,

0x89 , and you can see how it’s going to proceed:

char* s = GetString();

 ------ -----------------

 |0x50| | m | o | m |\0 |

 ------ -----------------

 0x50

char* t

 ------ -----------------

 |0x88| | m | o | m |\0 |

 ------ -----------------

 0x88

So now when we capitalize the copy, the original string is unaffected:

char* s = GetString();

 ------ -----------------

 |0x50| | m | o | m |\0 |

 ------ -----------------

 0x50

char* t

 ------ -----------------

 |0x88| | M | o | m |\0 |

 ------ -----------------

 0x88

• When we do this:

*t = toupper(*t);

…we’re only capitalizing the first letter, because *t refers to the contents of just

the single address t . It’s a pointer to a char , and your program has no way of

knowing that char is part of a longer string unless you start iterating through it to

look for the \0 at the end.

Week 4, continued

20

• Bracket notation and pointer dereference notation are functionally equivalent here, but

brackets are actually just syntactic sugar (simpler or clearer syntax abstracted on top

of more complicated syntax) for dereferencing the pointer and doing pointer arithmetic.

• Recall that we introduced this problem of swapping two variables a and b with a

temporary variable called tmp :

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

But remember that the problem is that it only swaps the variables locally, in the

function’s own slice of memory (the swap function doesn’t have access to the

variables in main , but rather copies).

• We need a way to pass variables not by copy, but actually access the original variables

in main. We can now solve this problem by passing swap the addresses where the

actual values are in the memory belonging to main .

• Let’s see this work in swap.c 11:

11 http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/swap.c

http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/swap.c
http://cdn.cs50.net/2015/fall/lectures/4/w/src4w/swap.c

Week 4, continued

21

#include <stdio.h>

// function prototype

void swap(int* a, int* b);

int main(void)

{

 int x = 1;

 int y = 2;

 printf("x is %i\n", x);

 printf("y is %i\n", y);

 printf("Swapping...\n");

 swap(&x, &y);

 printf("Swapped!\n");

 printf("x is %i\n", x);

 printf("y is %i\n", y);

}

/**

* Swap arguments' values.

*/

void swap(int* a, int* b)

{

 int tmp = *a;

 *a = *b;

 *b = tmp;

}

tmp is still just an integer, but a and b are addresses, or pointers.

In the parameter list of the swap function, the * before a and b signify that they

are pointers, while in the actual code of the swap function, *a and *b signify

dereferencing those pointers, i.e., going to those addresses and getting the values

there.

But now we also need to pass the addresses of x and y to swap , not their values.

We use &x and &y to mean "the address of x" and "the address of y".

• So to recap:

Week 4, continued

22

if x is a variable containing an int (or some other data type), we refer to it just

as x if we want the value it contains (the int or whatever), and if we want its

address, we use &x .

if a is a variable containing a pointer, e.g., an int* (or a pointer to any other data

type), we refer to it as just a if we want the address, the pointer itself, and we use

*a if we want the value contained at that address.

• As an aside, David still remembers where he was when he understood pointers, sitting

with his TF in the back of Eliot dining hall. So don’t worry if none of this makes sense

just yet (though I hope these notes are helpful)!

• Let’s look at a final program:

int main(void)

{

 int* x;

 int* y;

 x = malloc(sizeof(int));

 *x = 42;

 *y = 13;

 y = x;

 *y = 13;

}

It first declares two variables, x and y that aren’t integers, but pointers to integers.

Then we say x = malloc(sizeof(int)); , or "give me enough memory to

store an int ", and the address returned by malloc will be stored in x .

Meanwhile, *x = 42 is going to the address stored in x , and putting 42 in it.

Then we do the same with y , going to its address and putting 13 in it. But wait,

we haven’t given y a value! So it’s probably a garbage value, some number left

over from previous programs, but not an address to memory we should use to store

an int . It’s like trying to go into a building you don’t own or have permission to

enter, and bad things will happen.

Week 4, continued

23

• Let’s watch Pointer Fun with Binky12.

Binky is a clay figure that talks about this code with a narrator, using a "magic wand

of dereferencing" to show what we just explained, in a different way.

There are three basic rules:

"Pointer and pointee are separate - don’t forget to set up the pointee." (Don’t

forget to malloc something for y !)

"Dereference a pointer to access its pointee." (Use *x to go to the address

stored in x !)

"Assignment (=) between pointers makes them point to the same pointee." (x

= y sets them to the same address.)

12 http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi

http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi
http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi

	Week 4, continued
	Table of Contents
	1. Files, Headers, and Hex
	2. Structs
	3. Quick Reminder
	4. Strings and Pointers
	5. Memory Allocation

