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1. Linked Lists, continued

• Last time, we introduced this data structure called a linked list. This is a singly linked

list, because there’s only one pointer between any pair of nodes.

# We can also have a doubly linked list, where every node points both to the next

node and to the previous node. (This makes some kinds of traversal easier, but

requires more space for every node to have a second pointer.)

• Linked lists solve some of the problems we had with arrays - in particular, that arrays

are fixed in size.

# If we want to make an array bigger, we have to create a whole new array, copy the

values over, and free  the old array, which is very inefficient.
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# If we want to make a linked list bigger, we just add more nodes! We illustrated with

volunteers last time how to add nodes to the beginning, middle, and end of a linked

list.

• Linked lists do come with their own tradeoffs, though.

# They take up twice as much space (or more, if pointers on your system are 8 bytes

rather than 4 bytes, as they are on the CS50 IDE).

# We give up random access (i.e., constant time lookup) of any element in the list.

• What are the operations that are important over a collection of items, like an array or

a linked list? We need to be able to delete items, insert items, and search for items.

How do we implement these on linked lists?

1.1. Searching

• To implement search, we might start somewhere like this:

...

typedef struct node

{

    int n;

    struct node* next;

}

node;

...

bool search(int n, node* list)

{

}

# Recall that this typedef  is defining a node  type, that contains a value ( int n )

and a pointer to the next node ( struct node* next ).

• Let’s assume that someone else has inserted a bunch of elements into the linked list,

and we have a pointer to the beginning of the list (a node* ). How do we implement

search?

• We pass in the number we’re looking for, and the pointer we have to the beginning of

the list (like the pointer first  held by volunteer David on Monday).
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bool search(int n, node* list)

{

    node* ptr = list;

    while (ptr != NULL)

    {

        if (ptr->n == n)

        {

            return true;

        }

    }

}

# In line 3, we initialize a variable ptr  to keep track of where in our list we are, and

we start it pointing at the beginning of the list.

# We use a while  loop because we want to keep going until we hit the end of the

list, which will be represented by a NULL  pointer.

# Then in line 6, we check if the number stored at ptr , ptr->n , is what we’re

looking for.

# We might expect to use the struct notation we used with the student  type

before, which would be ptr.n , but because ptr  is actually a pointer to a struct

rather than a struct itself ( node*  vs node ), we need different notation.

# The ->  is syntax for going to the location from pointer ptr  and retrieving the

variable n  stored within that struct. (You could also use (*ptr).n , meaning

go to ptr  and then get the n  field, since *ptr  is a struct. And ptr->n  is

exactly the same, just "syntactic sugar," or something that makes the code look

better.)

• What if we don’t find the value n  in the node we’re currently looking at?
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bool search(int n, node* list)

{

    node* ptr = list;

    while (ptr != NULL)

    {

        if (ptr->n == n)

        {

            return true;

        }

        ptr = ptr->next;

    }

    return false;

}

# If the number isn’t what we’re looking for, then we set ptr  to ptr->next , which

is moving our placeholder to the next node  in the linked list.

# This lets us step through the list one node at a time, by following the next  pointer

associated with each node.

# If we get to the end of the linked list, as represented by reaching a NULL  value,

without finding the value, then we return false  - the value n  is not in our list.

• How long might it take to reach an element in this list? Ο(n), which isn’t bad, but is

linear. We’ve given up the random access that arrays allow, since malloc  gives us

memory from wherever it is available in the heap, and the addresses of each node

could be spaced far apart.

2. Stacks & Queues

• Recall the stack data structure that we mentioned last time. A stack canonically

supports two operations: push (add an element to the top of the stack) and pop (pull

an element off the top of the stack).

• We can code up a stack as follows:
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typedef struct

{

    int numbers[CAPACITY];

    int size;

}

stack;

# This is saying give me a structure with an array of size CAPACITY  (some constant

we’ve declared elsewhere), called numbers , and an int , called size , that

represents the number of elements currently in the stack.

• So in memory, we then have the following (assume for the moment that the constant

CAPACITY  has been set with #define  to 5, and size  starts at 0 before we’ve put

anything in the stack):

numbers

---------------------

|   |   |   |   |   |

---------------------

size

-----

| 0 |

-----

• Now if we want to push  the number 50, where should we put it in the array?

numbers

----------------------

| 50 |   |   |   |   |

----------------------

size

-----

| 1 |

-----

# We insert it at the front, and increment size  by 1.

• Let’s add a few more:

numbers

------------------------
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| 50 | 51 | 61 |   |   |

------------------------

size

-----

| 3 |

-----

• Now what happens if we pop  an element? pop  takes no arguments, and should just

return the most recently added element of the stack (which in this case is 61).

• We need to remove 61 from the numbers  array, and decrement size .

# How do we find the element we need to remove? We look for numbers[size -

1] , and decrement size .

# We don’t need to even actually remove 61 actively - once we’ve decremented

size , our program has forgotten that 61 was ever there.

# This is analogous to some of what we talked about on the computer forensics

problem set - computers rarely actually delete things; they can eventually be

overwritten by other things, but the data is usually still there until that happens. The

computer has just stopped keeping track of where the "deleted" information was

kept.

• This stack implementation has a problem - we can’t resize the numbers  array, so it

has a strict capacity of CAPACITY .

• Instead, we can implement a stack this way:

typedef struct

{

    int* numbers;

    int size;

}

stack;

# Now, we can malloc  a chunk of memory of any size and store its address in

numbers . We can even realloc  if we want a larger or smaller chunk of memory.

# This adds complexity (programmer time), but increases our flexibility.

• You should also be familiar with queues, the other abstract data structure we introduced

last time.
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• Unlike a stack, which implements push  and pop  (values are added to the top and

taken off the top), a queue has operations enqueue (add an element to the back of the

queue) and dequeue (take an element off the front of the queue).

• We can implement a queue like this:

typedef struct

{

    int front;

    int numbers[CAPACITY];

    int size;

}

queue;

# We have a numbers  array and a size  as we did with the stack, but now we’re

also keeping track of the front .

• If we enqueue  the same numbers as before, it looks similar:

numbers

------------------------

| 50 | 51 | 61 |   |   |

------------------------

size

-----

| 3 |

-----

front

-----

| 0 |

-----

• So how do we dequeue? We want to remove 50 ( numbers[front] ) and decrease

the size, but just decrementing the size no longer tells us exactly what’s going on. We

also need to keep track of where the front is, which we do by incrementing it:

numbers

------------------------

| 50 | 51 | 61 |   |   |

------------------------

size

-----
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| 2 |

-----

front

-----

| 1 |

-----

• Suppose we add more values, so now our queue looks like this:

numbers

----------------------------

| 50 | 51 | 61 | 121 | 124 |

----------------------------

size

-----

| 4 |

-----

front

-----

| 1 |

-----

# Oh no, we’re out of space! Except we aren’t actually - we’re not using numbers[0]

anymore, so we can put another value there.

# Then we have this:

numbers

-----------------------------

| 171 | 51 | 61 | 121 | 124 |

-----------------------------

size

-----

| 2 |

-----

front

-----

| 1 |

-----

# We can do this looping around with a modulo operator ( % ).

# But now we are really out of space, with the same problem as before.
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• Just as with the stack, we can give ourselves more size flexibility by switching out the

explicit array for instead a pointer that we can assign with malloc :

typedef struct

{

    int front;

    int* numbers;

    int size;

}

queue;

• We watch a short video in which Jack learns about queues and stacks.

3. Memory

• Now that we have pointers - addresses of locations in memory - let’s look in more detail

at what your computer’s memory looks like.

• Each program is given its own area of memory (in fact, establishing the illusion that it

has access to the entirety of your computer’s memory, even if multiple programs are

running at once), which is laid out like this:

-----------------------------

|                           |

|           text            |

|                           |

-----------------------------

|      initialized data     |

-----------------------------

|     uninitialized data    |

-----------------------------

|           heap            |

|             |             |

|             |             |

|             v             |

|                           |

|                           |

|                           |

|             ^             |

|             |             |

|             |             |
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|           stack           |

-----------------------------

|   environment variables   |

-----------------------------

# Note that one of these segments of memory is called the stack, and it is in fact

implemented as a stack as we discussed above.

# We’ve talked before about how each function gets its own segment of memory

on the stack, called a stack frame, so if we have our main  function, and then

main  calls a function swap , on the bottom there will be the stack frame for

main , and on top of that, a new stack frame for swap .

# Every time we call a new function, we layer a new stack frame on top.

# Local variables within each function are also stored in the stack, which is why

swap  can’t modify local variables in main  unless it knows their addresses

within the stack frame belonging to main .

• Today, we’ll focus on the heap, another chunk of memory where variables are stored

if assigned with malloc  (or any of the Get  functions from the CS50 Library, since

those use malloc  and the like under the hood).

# You can see that there’s a problem if the heap and the stack collide if your program

starts to use too much memory, and bad things will happen.

• Here’s a program that illustrates one way bad things can happen, particularly if you

have malicious users:

#include <string.h>

void f(char* bar)

{

    char c[12];

    strncpy(c, bar, strlen(bar));

}

int main(int argc, char* argv[])

{

    f(argv[1]);

}
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# It has no functional purpose, other than to demonstrate how a poorly written program

might lead to your whole computer being taken over. Notice main  takes argv[1]

and passes it in to f , so whatever word the user types in after the name of the

program, and then f  takes it, which we’ve called bar , and copies it into c , which

can hold 12 characters. c  is a local variable of 12 char s so it will live on the stack.

strncpy  copies a string, but only n  letters, in this case strlen(bar) , or the

length of the user-inputted string.

# The problem is that we’re not checking for the length of bar , so if it were 20

characters long, it would overflow and take up 8 more bytes than it should.

• The implication is this diagram of a zoomed-in version of the bottom of the program’s

stack:

|  unallocated stack space  |

-----------------------------

| c[0] |                    |

| ---- |                    |

|                           |

|         char c[12]        |

|                           |

|                   | ----- |

|                   | c[11] |

-----------------------------

|         char* bar         |

-----------------------------

|                           |

-----------------------------

|       return address      |

-----------------------------

|   parent routine's stack  |

# At the very bottom is the parent routine’s stack, in this case main , or whichever

function that called this one.

# The return address has always been there, which was copied over along with

local variables when the function was called, and this is just where in memory the

program should jump back to, once the function returns. In this case, it’s somewhere

in main .
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# The top is the stack frame for the function. There’s bar , an argument to the

function, and c , an array of characters. And to be clear, on the top left would be

c[0] , the first character, with the last, c[11] , on the bottom right corner.

• What happens if we pass in a string  with char* bar  longer than c ? You would

overwrite char* bar  and, even worse, the return address. Then the program would

go back to, well, anywhere in memory that bar  specified. When bad guys are curious

if a program is buggy or exploitable, they send lots of inputs of different lengths, and

when it causes your program to crash, then they have discovered a bug.

• In particular, the best case might look something like this:

|  unallocated stack space  |

-----------------------------

|  h   |  e   |  l   |  l   |

| ---- | ---- | ---- | ---- |

|  o   |  \0  |             |

| ---- | ---- |             |

|         char c[12]        |

|                           |

|                           |

-----------------------------

|         char* bar         |

-----------------------------

|                           |

-----------------------------

|       return address      |

-----------------------------

|   parent routine's stack  |

# The string passed in is just hello , which fits in c .

• But what about "attack code" that looks like this?

                |  unallocated stack space  |

  Address       -----------------------------

  0x80C03508 -> |  A   |  A   |  A   |  A   |

                | ---- | ---- | ---- | ---- |

                |  A   |  A   |  A   |  A   |

                | ---- | ---- | ---- | ---- |     char c[]

                |  A   |  A   |  A   |  A   |

                -----------------------------
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                |  A   |  A   |  A   |  A   |     char* bar

                -----------------------------

                |  A   |  A   |  A   |  A   |

                -----------------------------

                | 0x08 | 0x35 | 0xC0 | 0x80 |    return address

                -----------------------------

                |   parent routine's stack  |

# In this picture, the A s are arbitrary zeroes and ones that can do anything, maybe

rm -rf  or send spam, and if that person includes those, but also has the last 4

bytes be the precise address of the first character of the string , you can trick

a computer into going back to the beginning of the string  and executing the

code, instead of simply storing it. The return address, among other things, has been

overwritten. (And if you’ve noticed, the return address is the address of the first A ,

with the order of the bytes reversed. This is called little-endianness1 — an advanced

topic we won’t need to worry much about yet!)

• So in short, this bug came from not checking the boundaries of your array, and since

the computer uses the stack from bottom up (think trays from Annenberg being stacked

on a table), while arrays you push on the stack are written to from the top down, this

is even more of a concern. And though there are ways and entire languages around

this problem, the power of C comes with great responsibility and risk. If you ever read

articles about "buffer-overflow attacks," then they’re probably talking about this.

4. More Data Structures

• One problem with linked lists that we mentioned on Monday and earlier today is that

we don’t have random access to elements of the list, so searching for a value within

a linked list requires O(n), linear time.

• We claimed that we can construct a data structure that will give us O(log n) (logarithmic)

lookup time, and even one that will give us O(1) (constant) lookup time.

• If we have the numbers 22, 33, 44, 55, 66, 77, and 88, and we want to search for a

value among them in logarithmic time, we can go back to what we learned in Week 2,

throw them in an array, and use binary search:

------------------------------------

1  http://en.wikipedia.org/wiki/Endianness

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness
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| 22 | 33 | 44 | 55 | 66 | 77 | 88 |

------------------------------------

• But we can store our data in a cleverer way that still leverages the power of binary

search without restricting us to a fixed number of elements like an array does.

• Let’s introduce the general idea of a tree, a data structure in which nodes are connected

in descending layers of children, growing downward like a family tree:

• One specific kind of tree is a binary search tree:

# It’s binary in the sense that every node has no more than two children.

# It’s a search tree because the values of the nodes are arranged to make it possible

to find values easily - specifically, a node’s left child is always less than that node,

while a node’s right child is always greater than that node.

• We can implement a binary search tree with a struct , just as we did for previous

data structures:

typedef struct node

{

    int n;

    struct node* left;

    struct node* right;

}

node;

# Each node contains a value (here an integer) and pointers to its left and right

children.

• We can write a search function on a binary search tree like so:
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bool search(int n, node* tree)

{

    if (tree == NULL)

    {

        return false;

    }

    else if (n < tree->n)

    {

        return search(n, tree->left);

    }

    else if (n > tree->n)

    {

        return search(n, tree->right);

    }

    else

    {

        return true;

    }

}

# If our pointer to the tree is NULL , the tree is empty, so clearly it doesn’t contain

the value n .

# Otherwise, we check the value at the node against the value we’re looking for to

determine whether we should go left, whether we should go right, or whether we’ve

found our value and are done.

# This algorithm is recursive, because each level of the binary search tree is just

another binary search tree.

5. Compression

• Stepping away from trees, consider the German flag - or any similarly simple flag. If

we’re storing this in an image format, it seems kind of a waste to store all the black

pixels, then all the red pixels, then all the yellow pixels. What redundancy can we

eliminate here?

• Rather than remember the color of every pixel, we could encode just the leftmost

column of the flag, and somehow indicate that this column should be repeated as many

times as necessary to fill in the rest of the flag.
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• What about the French flag, where the bars are vertical rather than horizontal? We can

imagine a similar approach, storing one row and repeating it as many times vertically

as necessary to fill in the flag.

• This will result in somewhat better compression for the German flag than the French

flag, because there’s more horizontal redundancy.

• When we compress video, we can do similar removal of redundancy by remembering

only "key frames" and in between storing only what’s changed between those frames,

throwing away the information that’s the same between frames.

• But how do we compress text? Recall that text can be stored as ASCII, in which each

character is 8 bits, or 1 byte. But not all characters are used equally frequently, so

we might be able to get better information density if we use a smaller number of bits

for more common characters (like E ) and a larger number of bits for less common

characters (like W ).

# This is part of the logic behind Morse code - E , for example, is just a single dot -

but Morse code has the problem that you have to leave space between letters to be

able to tell the difference between, e.g., I  and two consecutive E  s.

• There’s a method of compression called Huffman coding that uses the frequency

of different characters while avoiding this problem of needing lots of extra space to

separate characters. Imagine we have the following string that we want to compress:

"ECEABEADCAEDEEEECEADEEEEEDBAAEABDBBAAEAAAC

DDCCEABEEDCBEEDEAEEEEEAEEDBCEBEEADEAEEDAEBC

DEDEAEEDCEEAEEE"

# The frequencies of the five letters in this string are as follows:

-------------------------------------------

 character |  A  |  B  |  C  |  D   |  E

-------------------------------------------

 frequency | 0.2 | 0.1 | 0.1 | 0.15 | 0.45

-------------------------------------------

# Huffman developed a tree-based algorithm in which we start with a node for each

character:

(0.1)     (0.1)     (0.15)    (0.2)    (0.45)

  B         C         D         A        E
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# We then connect these nodes with new parents, if you will, by connecting the two

smallest frequencies:

     (0.2)

     /   \

  0 /     \ 1

   /       \

(0.1)     (0.1)     (0.15)    (0.2)    (0.45)

  B         C         D         A        E

# We do the same thing again, connecting the next two smallest frequencies. We have

two options here, since the node for A and the new node both have a frequency of

0.2, but let’s keep going on top of this new node:

          (0.35)

          /    \

       0 /      \ 1

        /        \

     (0.2)        \

     /   \         \

  0 /     \ 1       \

   /       \         \

(0.1)     (0.1)     (0.15)    (0.2)    (0.45)

  B         C         D         A        E

# We do this two more times to connect all the leaf nodes into a single tree:

                    (1.0)

                    /    \

                 0 /      \ 1

                  /        \

               (0.55)       \

               /    \        \

            0 /      \ 1      \

             /        \        \

          (0.35)       \        \

          /    \        \        \

       0 /      \ 1      \        \

        /        \        \        \

     (0.2)        \        \        \

     /   \         \        \        \

  0 /     \ 1       \        \        \
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   /       \         \        \        \

(0.1)     (0.1)     (0.15)    (0.2)    (0.45)

  B         C         D         A        E

# Notice that we’ve labeled all the edges as 0 or 1 (left edges 0, right edges 1).

# Now to store text using this tree, follow the path from the root to the character you

want to store. This means that B  can be encoded as 0000 , C  as 0001 , D  as

001 , A  as 01 , and E  as just 1 .

# This means that more common letters have shorter codes!

# There’s no ambiguity as we had in Morse code, which is a useful consequence of

the fact that all the letters are leaf nodes of the tree.

# We could implement this in C like so:

typedef struct node

{

    char symbol;

    float frequency;

    struct node* left;

    struct node* right;

}

node;

6. Hash Tables

• A hash table is a data structure divided into "buckets" - imagine we’re sorting a deck

of cards by suit; then our buckets would be hearts, diamonds, clubs, and spades.

# The idea is that we look at the input and make a decision based on that input (five of

diamonds goes in this pile over here, two of clubs goes in that pile over there). This

technique is known as hashing, or taking an input and computing a value, generally

a number, that becomes the index into a storage container (like an array).

# During the CS50 Hackathon last year, we also separated nametags into piles by

alphabet, so greeters could find them more easily as people arrived.

# One TF made a clever sign reading "Hash Yourself (by First Name)."

• Let’s consider a stack of blue books, like the ones used for exams; each has a student’s

name on it. We can hash the blue books by each student’s first initial.



Week 5, continued

19

# We might map A to 0, and Z to 25, and place them into numbered piles that way.

# A C program could just use the ASCII value, but subtract 65 from a capital A, or 97

from a lowercase a, so we can place them in buckets starting from 0.

# So we put a blue book in the A bin, one in the D bin, another in the B bin, and now

imagine we have another blue book from a student with a name starting with A.

Where do we put it?

# If we’re building our hash table in an array, we’re in trouble - there’s already

something in the array index for A, but we need somewhere to put this! This is called

a collision.

# One way to deal with this is to look through all the buckets until we find an empty

one. This strategy is called linear probing. One advantage is that if you have no

students with names starting with Q or X, you can still use that space. But there’s a

major disadvantage: we now can’t guarantee that when we go to look for the blue

book of a student named Anna, it will be in the A bin.

• Let’s formalize this idea. The following is an array with the index of each row on the left:

# This array  has 26 elements and is named table .

• This is one implementation of a hash table, a higher-level data structure, which could

use an array or linked list or some other fundamental ingredient as a building block to

making a more useful final result.

• We can simply declare a hash table with something like char* table[CAPACITY]; ,

in which case it will be an array with size CAPACITY , but we might call a hash table

an abstract data type that is layering on top of this array.

• Insertion starts by being #(1) since the array is empty and you can jump to the correct

location immediately, but once your data set becomes larger, insertion becomes #(n)

since we have to move down the array looking for a spot. If your array is big enough

and your data is sparse enough, you get the advantage of constant time, but the risk

makes linear probing imperfect.

6.1. Separate Chaining

• We can do better by using linked lists. Let’s look at this picture of separate chaining.
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# This image, from some dusty textbook of David’s era (as you can tell by the old-

fashioned names), is an array of size 31, with strings hashed not by the letters they

are made of, but the day of the month the person was born in, so the names might

be spread out a bit more evenly.

• But this is still troublesome since people certainly have the same day of the month they

were born on, so it looks like we have an array on the left side (drawn vertically), that

looks like it’s an array of linked lists.

# As we get more advanced, we can start combining fundamental ingredients into

things like this, with basic blocks of arrays and linked lists and structs combined to

create a more sophisticated data structure.

• The hash table above is an array with "chains" that can grow or shrink based on the

elements you insert and remove.

7. Tries

• Instead of a hash table, we can use another type of tree, called a trie or retrieval tree.

# Each node (represented by a rectangle above) has 27 indices, one for each letter

A-Z, plus one because we’ll allow for a word to have an apostrophe.

# We also keep track of whether there’s a word that ends at a given node.

• These tries use a lot of memory since each node allocates space for so many indices,

and most of that space will be empty, at least initially when we have few strings.

• But we gain speed and spend less time, since insertion time will be #(1), since no one

has an infinitely long name. The longest word in the dictionary for the problem set will

be 40-something letters long, but it will be constant and not depend on how many other

names are in this data structure. The running time will now depend on the length of the

string, which is asymptotically #(1).

• Lookup of a name in a trie is equally fast regardless of how many other names are in

the trie! It depends only on the length of the name.
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8. Announcements

• Quiz 0 is next Wednesday!

• There will be a lecture on Monday streamed live from Yale, because Monday is not a

University holiday at Yale (although it is at Harvard).
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