
1

Week 7, continued

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. PHP .. 1

1.1. Syntax .. 1

1.2. Using PHP to Send Texts ... 10

2. Using PHP for Web Programming ... 14

1. PHP

• At this point, we’re pretty much done with teaching you languages. Last lecture, we

looked at HTML tags and attributes, and now we’re going to look at PHP, but we’re not

going to teach you PHP per se - we’ll run through it quickly and give you the tools to

understand this language.

1.1. Syntax

• In PHP, there’s no need for a main function - the code in your PHP file (that isn’t

wrapped in some other function) is just executed from the top.

• Variables in PHP are declared as follows:

$s = "hello, world";

This looks pretty similar to C, but note that we’re not declaring the variable’s type,

instead just prepending all variable names with $. PHP is loosely typed, whereas

C is strongly typed, meaning that PHP knows the difference between datatypes

but the computer will figure it out for you, whereas in C you have to tell the computer

exactly what type each variable is.

• Conditions in PHP look identical to in C:

Week 7, continued

2

if (condition)

{

 // do this

}

else if (condition)

{

 // do that

}

else

{

 // do this other thing

}

Also exactly as in C, boolean conditions can be combined with && or || .

• Switches are also functionally equivalent to those in C:

switch (expression)

{

 case i:

 // do this

 break;

 case j:

 // do that

 break;

 default:

 // do this other thing

 break;

}

However, in C we’re limited to comparing only certain datatypes in a switch

statement (int , char , etc), whereas in PHP we can compare full-fledged strings

and the like without worrying about pointers.

• The loops we’ve seen before are structured the exact same way, too, such as the for

loop:

Week 7, continued

3

for (initializations; condition; updates)

{

 // do this again and again

}

• But now we add an additional loop, called a foreach loop, that lets us iterate over

an array without worrying about the details of indices:

foreach ($numbers as $number)

{

 // do this with $number

}

We’re assuming here that $numbers is an array containing a bunch of numbers.

On each iteration of this loop, PHP will update $number to contain the value of

the next element of $numbers .

• We can declare an array in PHP like this:

$numbers = [4, 8, 15, 16, 23, 42]

• Even more powerfully, PHP supports associative arrays, or arrays of key-value pairs.

Rather than elements being indexed by some number between 0 and the length of the

array, elements are indexed by their keys:

$quote = ["symbol" => "FB", "price" => "79.53"];

Each key, value pair is indicated by "key" # "value" .

Most other languages also support associative arrays in some way.

Whereas in C we might index into an array as quote[i] , and have to remember

which value was in which numeric index, in PHP we can do $quote["symbol"]

to directly access the symbol field.

• PHP does have a huge variety of other features, including many, many more functions

already written for you than in C.

• In PHP, we no longer have to worry about low-level, powerful details of memory

management (e.g., malloc , free , pointers more generally).

• Let’s write a super simple program in PHP as follows:

Week 7, continued

4

<?php

 printf("hello, world\n");

?>

Any PHP file needs to start with the syntax <?php and end with ?> so the

computer knows to interpret everything between these tags as PHP code.

We don’t need to run make hello on this, because PHP is not a compiled

language like C - it’s an interpreted language, meaning that it’s not compiled

into machine code, but rather passed as input to an interpreter, a program that

understands PHP code line by line.

The interpreter essentially runs a big loop with many conditions that iterates over

each line of code that the programmer wrote and executes the appropriate action

corresponding to the line of code.

This means that there’s no make , no object code, and no binary executable

at the end - just our source code file. We can only run the source code file via

the interpreter, since it’s not directly in machine language (0 s and 1 s) that the

computer can understand itself.

So to run our program, we actually pass our source code as input to the interpreter

program, which is just called php :

jharvard@ide50:~/workspace $ php hello.php

hello, world

jharvard@ide50:~/workspace $

• We don’t even need to use printf in PHP - we can just use a function called print ,

and rather than using printf 's format strings to print variable values, we have simpler

ways of doing that (although printf itself works pretty much identically in PHP as

in C).

• PHP has a few syntactic differences from C (although overall it’s quite similar), but the

programming concepts at work are very much the same.

Week 7, continued

5

• Recall that a few weeks ago we had a code example called conditions-1.c1 -

let’s translate it into PHP:

<?php

 // ask user for an integer

 $n = readline("I'd like an integer please: ");

 // analyze user's input

 if ($n > 0)

 {

 printf("You picked a positive number!\n");

 }

 else if ($n == 0)

 {

 printf("You picked zero!\n");

 }

 else

 {

 printf("You picked a negative number!\n");

 }

?>

Note that rather than int n = GetInt(); , we have in line 4, $n =

readline("I’d like an integer please: "); - where readline is

a function that accepts a user’s input, much like GetInt() and the like from the

CS50 Library in C, but it takes as an argument the text to print as a prompt for the

user.

Apart from that, this looks almost identical to our original C version, with really the

only change being that our variables are all now prefixed with $.

But again, unlike in C, this isn’t going to be compiled - instead, we run it using the

php interpreter:

jharvard@ide50:~/workspace $ php conditions-1.php

I'd like an integer please: 50

You picked a positive number!

1 http://cdn.cs50.net/2015/fall/lectures/1/w/src1w/conditions-1.c

http://cdn.cs50.net/2015/fall/lectures/1/w/src1w/conditions-1.c
http://cdn.cs50.net/2015/fall/lectures/1/w/src1w/conditions-1.c

Week 7, continued

6

jharvard@ide50:~/workspace $

• Let’s try something a little more powerful. In PHP, we can implement Problem Set 5

much more simply, as in dictionary.php2. We’ll assume speller has been

implemented for us (in fact, it’s almost identical to the C version, line by line). We’ll

start like this:

<?php

 $size = 0;

 $table = [];

...

As we did in C, we can store the size of our dictionary in a global variable.

Implementing a hash table in PHP is just $table = []; , because a hash table

can be thought of as an associative array where the keys are the words and the

values are true to indicate that the word is present in the dictionary.

• Continuing on, we can implement the size function much as we would in C:

...

 function size()

 {

 global $size;

 return $size;

 }

...

In PHP, if we want to use a global variable called $size inside a function, we have

to tell the function to look for that variable in the global namespace using global

$size .

Note also that functions' return types in PHP don’t need to be specified (and

functions are just declared as function).

• How about load ?

2 http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/mispellings/dictionary.php.src

http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/mispellings/dictionary.php.src
http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/mispellings/dictionary.php.src

Week 7, continued

7

...

 function load($dictionary)

 {

 global $table, $size;

 if (!file_exists($dictionary) && is_readable($dictionary))

 {

 return false;

 }

 foreach (file($dictionary) as $word)

 {

 $table[chop($word)] = true;

 $size++;

 }

 return true;

 }

...

First notice in the line labeled 1 that we can read the lines of a file into an array with

the PHP function file , which takes a filename as its argument and returns the

array containing all the lines of the file. We don’t have to handle any of the details

of file I/O by hand.

In the line labeled 2, we add the word in question to our hash table by indexing into

our array, not by number but using the word itself as the key.

Note that these two lines implement the complete functionality of loading words from

a file into a hash table - everything else in this function is error checking and tweaks.

• Let’s continue with check :

Week 7, continued

8

...

 function check($word)

 {

 global $table;

 if (isset($table[strtolower($word)]))

 {

 return true;

 }

 else

 {

 return false;

 }

 }

...

Since the only value we’re ever storing in the associative array is just

true , we can check whether a word is in our dictionary by just checking

isset($table[$word]) , i.e., does that key exist in our associative array, as in

the line labeled 3 above.

• Let’s finish this with unload :

...

 function unload()

 {

 return;

 }

?>

We never malloc ed anything, so there’s nothing to free ! We don’t need to worry

about the memory management details of our data structure, because PHP will

handle them for us under the hood. This is a feature of higher-level languages that

really streamlines our code.

• What’s the price we’re paying for our code being this much simpler? Well, let’s compare

this implementation’s performance to the staff solution to Problem Set 5 on a large text

like the King James Bible:

Week 7, continued

9

jharvard@ide50:~/workspace/src7w/mispellings $ ~cs50/pset5/speller texts/

kjv.txt

[... many misspelled words ...]

WORDS MISSPELLED: 33441

WORDS IN DICTIONARY: 143091

WORDS IN TEXT: 799460

TIME IN load: 0.03

TIME IN check: 0.52

TIME IN size: 0.00

TIME IN unload: 0.01

TIME IN TOTAL: 0.56

jharvard@ide50:~/workspace/src7w/mispellings $ php speller texts/kjv.txt

[... many misspelled words ...]

WORDS MISSPELLED: 33441

WORDS IN DICTIONARY: 143091

WORDS IN TEXT: 799460

TIME IN load: 0.19

TIME IN check: 1.07

TIME IN size: 0.00

TIME IN unload: 0.00

TIME IN TOTAL: 1.26

jharvard@ide50:~/workspace/src7w/mispellings $

So the C version takes 0.56 seconds to spell-check the King James Bible, while the

PHP version takes 1.26 seconds. Still pretty fast, but noticeably slower.

Interpreted languages in general are going to be slower than compiled languages

like C, because the interpreter has to read them line by line, and so the conversion

to machine code is happening at the same time as the program running.

So our implementation time is significantly less (5 minutes in PHP versus probably

several hours in C), but we pay for it with longer running time (which might make

more of a difference than the 0.7 seconds above if we were working with larger

datasets or on older hardware).

Note also that although our programs of tens or hundreds of lines of C code

compile very quickly, huge pieces of software like the commercial programs

Week 7, continued

10

produced by Microsoft or Google might contain many millions of lines of code,

and could take much more time to compile (several seconds to minutes or even,

for particularly enormous programs, hours).

1.2. Using PHP to Send Texts

• It’s even possible to do much more impressive things, like send a text message to

everyone in CS50 programmatically, using PHP.

This demo has not been uniformly successful in the various years that we’ve tried it.

We have everyone’s names, phone numbers, and carriers stored in a CSV, or

comma-separated values, file.

It’s possible to send texts via email using SMS-to-email gateways - most carriers

provide an email address that you can append to your number to send a text to your

phone via email.

The basic structure of our code is going to start out looking something like this:

Week 7, continued

11

<?php

 $handle = fopen("students.csv", "r");

 if ($handle == false)

 {

 printf("could not open file\n");

 exit(1);

 }

 $addresses = [];

 while ($row = fgetcsv($handle))

 {

 $number = $row[2];

 $carrier = $row[3];

 if ($carrier == "AT&T")

 {

 $address = "{$number}@txt.att.net";

 $addresses[] = $address;

 }

 // repeat for several other carriers

 }

 fclose($handle);

...

Note in the line labeled 1 that we don’t return 1; , because we’re not inside

a function - instead, we exit(1); from the PHP interpreter to indicate that an

error has occurred.

The function fgetcsv , in the line labeled 2, takes a file handle as its argument

and returns an array containing the values in each column of the CSV for the

next row (i.e., it parses the line by splitting it on commas).

We don’t need to mess around with format strings in PHP; in the line labeled 3

we can see that to construct an email address from someone’s phone number,

we can just insert it directly into the string, wrapping the variable name in curly

braces as in $address = "{$number}@txt.att.net"; .

Week 7, continued

12

In the line labeled 4, we can see how to push an element onto the end of an array

(equivalent syntax would be array_push($addresses, $address) . We

don’t need to worry about growing the size of the array - PHP handles that for us.

Now let’s do the work of actually sending emails to all these addresses we’ve

constructed:

Week 7, continued

13

...

 // instantiate mailer

 $mail = new PHPMailer();

 // configure mailer

 // http://phpmailer.worxware.com/index.php?pg=methods

 // http://phpmailer.worxware.com/index.php?pg=properties

 // https://www.google.com/settings/u/0/security/lesssecureapps

 $mail->IsSMTP();

 $mail->Host = "smtp.gmail.com";

 $mail->Password = "TODO";

 $mail->Port = 587;

 $mail->SMTPAuth = true;

 $mail->SMTPDebug = 1;

 $mail->SMTPSecure = "tls";

 $mail->Username = "TODO";

 // set From:

 $mail->SetFrom("bot@cs50.net");

 // set body

 $mail->Body = "Miss you! love, CS50 Bot";

 // iterate over email addresses

 for ($i = 0, $n = count($addresses); $i < $n; $i++)

 {

 // add email address to To: field

 $mail->addAddress($addresses[$i]);

 // send email

 if ($mail->Send())

 {

 print("Sent text #{$i}.\n");

 }

 else

 {

 print($mail->ErrorInfo);

 }

 // clear To: field

 $mail->ClearAddresses();

 }

?>

Week 7, continued

14

In the line labeled 5, we use a library called PHPMailer that gives us the ability

to send emails. Below that, you can see various settings, including setting the

Host to smtp.gmail.com .

Note in the line labeled 6 that we no longer need to keep around the size of an

array - we can now get it by using the count function.

$mail here is essentially a struct (which the arrow notation should remind

you of), which can contain not only values but also functions (as we can see in the

line labeled 7), called methods, because PHP is an object-oriented language.

The line labeled 8 is key! Without this, on each iteration, everyone who’s gotten

a text so far gets another text, because they would remain in the address list!

(This actually happened when we attempted this demo in 2011.)

Volunteer Maya comes up to actually hit enter to send texts to everyone…

As usual, we have some technical difficulties, but instead we use our program

to spit out everyone’s text-to-email addresses and then paste them into Gmail.

2. Using PHP for Web Programming

• We’re moving into PHP not so we can write more command-line programs more easily,

but instead so we can start writing code that generates web pages.

We can construct in PHP, as David did many years ago in Perl, a website that

lets users sign up for freshman intramural sports by taking input from the user and

storing it in some way.

If we look at froshims-0.php3, we can see that it’s actually all HTML, except

for a PHP comment at the top, because PHP was designed to be intermingled with

HTML:

3 http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/froshims-0.php.src

http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/froshims-0.php.src
http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/froshims-0.php.src

Week 7, continued

15

<?php

 /**

 * froshims-0.php

 *

 * David J. Malan

 * malan@harvard.edu

 *

 * Implements a registration form for Frosh IMs.

 * Submits to register-0.php.

 */

?>

<!DOCTYPE html>

<html>

 <head>

 <title>Frosh IMs</title>

 </head>

 <body style="text-align: center;">

 <h1>Register for Frosh IMs</h1>

 <form action="register-0.php" method="post">

 Name: <input name="name" type="text"/>

 <input name="captain" type="checkbox"/> Captain?

 <input name="comfort" type="radio" value="less"/> Less

 Comfortable

 <input name="comfort" type="radio" value="more"/> More

 Comfortable

 Dorm:

 <select name="dorm">

 <option value=""></option>

 <option value="Apley Court">Apley Court</option>

 <option value="Canaday">Canaday</option>

 [... all the other freshman dorms ...]

 </select>

 <input type="submit" value="Register"/>

 </form>

 </body>

</html>

Week 7, continued

16

This form submits to another file called register-0.php4, which is also mostly

HTML, but at least has one line of actual PHP code:

<?php

 /**

 * register-0.php

 *

 * David J. Malan

 * malan@harvard.edu

 *

 * Dumps contents of $_POST.

 */

?>

<!DOCTYPE html>

<html>

 <head>

 <title>Frosh IMs</title>

 </head>

 <body>

 <pre><?php print_r($_POST); ?></pre>

 </body>

</html>

print_r is a print function that’s really just intended for debugging, but it shows

that we can use the values passed through a form to change what’s displayed

on a page.

Instead let’s look at froshims-2.php5, which is identical to froshims-0.php ,

except that instead of submitting to register-0.php it submits to

register-2.php 6:

4 http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/register-0.php.src
5 http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/froshims-2.php.src
6 http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/register-2.php.src

http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/register-0.php.src
http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/froshims-2.php.src
http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/register-2.php.src
http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/register-0.php.src
http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/froshims-2.php.src
http://cdn.cs50.net/2015/fall/lectures/7/w/src7w/froshims/register-2.php.src

Week 7, continued

17

<!DOCTYPE html>

<html>

 <head>

 <title>Frosh IMs</title>

 </head>

 <body>

 <?php if (empty($_POST["name"]) || empty($_POST["comfort"])

 || empty($_POST["dorm"])): ?>

 You must provide your name, comfort, and dorm! Go back.

 <?php else: ?>

 You are registered! (Well, not really.)

 <?php endif ?>

 </body>

</html>

Although we’re still not really registering anyone - i.e., we’re not storing anyone’s

information anywhere - we can do some error checking here using PHP.

We kind of glossed over this in the previous example, but $_POST is an

example of a superglobal variable containing the values that were passed to

your backend using the HTTP POST method. PHP turns the contents of the

HTTP request, all those key-value pairs, into an associative array, so if you want

to get at the name that a user submitted in your form, you can access it using

$_POST["name"] .

• This was a bit of a whirlwind tour, but we’ll continue with PHP next week!

	Week 7, continued
	Table of Contents
	1. PHP
	1.1. Syntax
	1.2. Using PHP to Send Texts

	2. Using PHP for Web Programming

