
1

Problem Set 3: Game of Fifteen

This is CS50. Harvard University. Fall 2015.

Table of Contents

Objectives ... 1

Recommended Reading ... 2

Academic Honesty ... 2

Reasonable ... 3

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 5

Getting Started ... 6

Searching ... 7

search .. 13

Sorting .. 15

sort .. 15

search .. 16

The Game Begins .. 17

questions ... 18

fifteen ... 19

How to Submit ... 21

Step 1 of 2 .. 21

Step 2 of 2 .. 22

Questions? Head to CS50 Discuss1 or join classmates at office hours2!

Objectives

• Accustom you to reading someone else’s code.

• Introduce you to larger programs and programs with multiple source files.

1 https://cs50.net/discuss
2 https://cs50.net/hours

https://cs50.net/discuss
https://cs50.net/hours
https://cs50.net/discuss
https://cs50.net/hours

Problem Set 3:

Game of Fifteen

2

• Empower you with Makefiles.

• Implement a party favor.

Recommended Reading

• Page 17 of http://www.howstuffworks.com/c.htm.

• Chapters 20 and 23 of Absolute Beginner’s Guide to C.

• Chapters 13, 15, and 18 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter for disciplinary action and the outcome is punitive, the course reserves the right to

impose local sanctions on top of that outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

for further disciplinary action except in cases of repeated acts.

http://www.howstuffworks.com/c.htm

Problem Set 3:

Game of Fifteen

3

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at office hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

Problem Set 3:

Game of Fifteen

4

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Problem Set 3:

Game of Fifteen

5

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether or not taking the course for a letter grade, must ordinarily submit

this and all other problem sets to be eligible for a satisfactory grade unless granted an

exception in writing by the course’s heads.

Getting Ready

First, re-acquaint yourself with with our old friends, linear search and binary search (and

Patrick), if hazy:

https://www.youtube.com/watch?v=CX2CYIJLwfg

Next, get to know our new friends, bubble sort, selection sort, insertion sort, and merge

sort (and Jackson, Tommy, and Rob):

https://www.youtube.com/watch?v=8Kp-8OGwphY

Phew, so many shorts. And so many sorts! Ha.

Finally, a more in-depth look at debugging techniques from Dan! (Odds are these 23

minutes with Dan will save you hours over the course of the term, since GDB is a far better

tool than printf in many cases!)

https://www.youtube.com/watch?v=-G_klBQLgdc

Be sure you’re reasonably comfortable answering the below when it comes time to submit

this problem set’s form!

• Why does binary search require that an array be sorted?

• Why is bubble sort in O(n2)?

• Why is insertion sort in Ω(n)?

https://www.youtube.com/watch?v=CX2CYIJLwfg
https://www.youtube.com/watch?v=8Kp-8OGwphY
https://www.youtube.com/watch?v=-G_klBQLgdc

Problem Set 3:

Game of Fifteen

6

• In no more than 3 sentences, how does selection sort work?

• What’s an upper bound on the (worst-case) running time of merge sort?

• GDB lets you "debug" program, but, more specifically, what does it let you do?

Getting Started

Recall that, for Problem Sets 1 and 2, you started writing programs from scratch, creating

your own pset1 and pset2 directories with mkdir . (And for Problem Set 0, you

started writing programs in Scratch! Ha.) For Problem Set 3, you’ll instead download

"distribution code" (otherwise known as a "distro"), written by us, and add your own lines

of code to it. You’ll first need to read and understand our code, though, so this problem

set is as much about learning to read someone else’s code as it is about writing your own!

Let’s get you started. Log into cs50.io3 and execute

update50

within a terminal window to make sure your workspace is up-to-date. If you somehow

closed your terminal window (and can’t find it!), make sure that Console is checked under

the View menu, then click the green, circled plus (+) in CS50 IDE’s bottom half, then select

New Terminal. If you need a hand, do just ask via CS50 Discuss4!

Next, execute

cd ~/workspace

at your prompt to ensure that you’re inside of workspace (which is inside of your home

directory). Then execute

wget http://cdn.cs50.net/2015/fall/psets/3/pset3/pset3.zip

to download a ZIP of this problem set’s distro into your workspace (with a command-line

program called wget). You should see a bunch of output followed by:

3 https://cs50.io/
4 https://cs50.net/discuss

https://cs50.io/
https://cs50.net/discuss
https://cs50.io/
https://cs50.net/discuss

Problem Set 3:

Game of Fifteen

7

'pset3.zip' saved

Confirm that you’ve indeed downloaded pset3.zip by executing

ls

and then run

unzip pset3.zip

to unzip the file. If you then run ls again, you should see that you have a newly unzipped

directory called pset3 as well. Proceed to execute

cd pset3

followed by

ls

and you should see that the directory contains two "subdirectories":

fifteen find

How fun!

Searching

Okay, let’s dive into one of those subdirectories. Execute the command below in a terminal

window.

cd ~/workspace/pset3/find

If you list the contents of this directory (remember how?), you should see the below.

Problem Set 3:

Game of Fifteen

8

helpers.c helpers.h Makefile find.c generate.c

Wow, that’s a lot of files, eh? Not to worry, we’ll walk you through them.

Implemented in generate.c is a program that uses a "pseudorandom-number

generator" (via a function called drand48) to generate a whole bunch of random (well,

pseudorandom, since computers can’t actually generate truly random) numbers, one per

line. Go ahead and compile this program by executing the command below.

make generate

Now run the program you just compiled by executing the command below.

./generate

You should be informed of the program’s proper usage, per the below.

Usage: generate n [s]

As this output suggests, this program expects one or two command-line arguments. The

first, n , is required; it indicates how many pseudorandom numbers you’d like to generate.

The second, s , is optional, as the brackets are meant to imply; if supplied, it represents

the value that the pseudorandom-number generator should use as its "seed." A seed

is simply an input to a pseudorandom-number generator that influences its outputs. For

instance, if you seed drand48 by first calling srand48 (another function whose purpose

is to "seed" drand48) with an argument of, say, 1 , and then call drand48 itself three

times, drand48 might return 2728 , then 29785 , then 54710 . But if you instead seed

drand48 by first calling srand48 with an argument of, say, 2 , and then call drand48

itself three times, drand48 might instead return 59797 , then 10425 , then 37569 .

But if you re-seed drand48 by calling srand48 again with an argument of 1 , the next

three times you call drand48 , you’ll again get 2728 , then 29785 , then 54710 ! See,

not so random.

Go ahead and run this program again, this time with a value of, say, 10 for n , as in the

below; you should see a list of 10 pseudorandom numbers.

Problem Set 3:

Game of Fifteen

9

./generate 10

Run the program a third time using that same value for n ; you should see a different list of

10 numbers. Now try running the program with a value for s too (e.g., 0), as in the below.

./generate 10 0

Now run that same command again:

./generate 10 0

Bet you saw the same "random" sequence of ten numbers again? Yup, that’s what

happens if you don’t vary a pseudorandom number generator’s initial seed.

Now take a look at generate.c itself. (Remember how?) Comments atop that file

explain the program’s overall functionality. But it looks like we forgot to comment the code

itself. Read over the code carefully until you understand each line and then comment our

code for us, replacing each TODO with a phrase that describes the purpose or functionality

of the corresponding line(s) of code. (Know that an unsigned int is just an int

that cannot be negative.) And for more details on rand and srand , recall that you can

execute:

man drand48

and:

man srand48

Once done commenting generate.c , re-compile the program to be sure you didn’t

break anything by re-executing the command below.

make generate

If generate no longer compiles properly, take a moment to fix what you broke!

Problem Set 3:

Game of Fifteen

10

Now, recall that make automates compilation of your code so that you don’t have to

execute clang manually along with a whole bunch of switches. Notice, in fact, how make

just executed a pretty long command for you, per the tool’s output. However, as your

programs grow in size, make won’t be able to infer from context anymore how to compile

your code; you’ll need to start telling make how to compile your program, particularly

when they involve multiple source (i.e., .c) files. And so we’ll start relying on "Makefiles,"

configuration files that tell make exactly what to do.

How did make know how to compile generate in this case? It actually used a configuration

file that we wrote. Go ahead and look at the file called Makefile that’s in the same

directory as generate.c . This Makefile is essentially a list of rules that we wrote

for you that tells make how to build generate from generate.c for you. The relevant

lines appear below.

generate: generate.c

 clang -ggdb3 -O0 -std=c11 -Wall -Werror -o generate generate.c

The first line tells make that the "target" called generate should be built by invoking the

second line’s command. Moreover, that first line tells make that generate is dependent

on generate.c , the implication of which is that make will only re-build generate on

subsequent runs if that file was modified since make last built generate . Neat time-

saving trick, eh? In fact, go ahead and execute the command below again, assuming you

haven’t modified generate.c .

make generate

You should be informed that generate is already up-to-date. Incidentally, know that the

leading whitespace on that second line is not a sequence of spaces but, rather, a tab.

Unfortunately, make requires that commands be preceded by tabs, so be careful not

to change them to spaces, else you may encounter strange errors! The -Werror flag,

recall, tells clang to treat warnings (bad) as though they’re errors (worse) so that you’re

forced (in a good, instructive way!) to fix them.

Now take a look at find.c . Notice that this program expects a single command-line

argument: a "needle" to search for in a "haystack" of values. Once done looking over the

code, go ahead and compile the program by executing the command below.

Problem Set 3:

Game of Fifteen

11

make find

Notice, per that command’s output, that make actually executed the below for you.

clang -ggdb3 -O0 -std=c11 -Wall -Werror -o find find.c helpers.c -lcs50 -lm

Notice further that you just compiled a program comprising not one but two .c files:

helpers.c and find.c . How did make know what to do? Well, again, open up

Makefile to see the man behind the curtain. The relevant lines appear below.

find: find.c helpers.c helpers.h

 clang -ggdb3 -O0 -std=c11 -Wall -Werror -o find find.c helpers.c -lcs50 -

lm

Per the dependencies implied above (after the colon), any changes to find.c ,

helpers.c , or helpers.h will compel make to rebuild find the next time it’s invoked

for this target.

Go ahead and run this program by executing, say, the below.

./find 13

You’ll be prompted to provide some hay (i.e., some integers), one "straw" at a time. As

soon as you tire of providing integers, hit ctrl-d to send the program an EOF (end-of-file)

character. That character will compel GetInt from the CS50 Library to return INT_MAX ,

a constant that, per find.c , will compel find to stop prompting for hay. The program

will then look for that needle in the hay you provided, ultimately reporting whether the

former was found in the latter. In short, this program searches an array for some value.

At least, it should, but it won’t find anything yet! That’s where you come in. More on your

role in a bit.

In turns out you can automate this process of providing hay, though, by "piping" the

output of generate into find as input. For instance, the command below passes 1,000

pseudorandom numbers to find , which then searches those values for 42 .

./generate 1000 | ./find 42

Problem Set 3:

Game of Fifteen

12

Note that, when piping output from generate into find in this manner, you won’t

actually see generate 's numbers, but you will see find 's prompts.

Alternatively, you can "redirect" generate 's output to a file with a command like the

below.

./generate 1000 > numbers.txt

You can then redirect that file’s contents as input to find with the command below.

./find 42 < numbers.txt

Let’s finish looking at that Makefile . Notice the line below.

all: find generate

This target implies that you can build both generate and find simply by executing

the below.

make all

Even better, the below is equivalent (because make builds a Makefile 's first target

by default).

make

If only you could whittle this whole problem set down to a single command! Finally, notice

these last lines in Makefile :

clean:

 rm -f *.o a.out core find generate

This target allows you to delete all files ending in .o or called core (more on that soon!),

find , or generate simply by executing the command below.

Problem Set 3:

Game of Fifteen

13

make clean

Be careful not to add, say, *.c to that last line in Makefile ! (Why?) Any line,

incidentally, that begins with # is just a comment.

search

And now the fun begins! Notice that find.c calls search , a function declared in

helpers.h . Unfortunately, we forgot to implement that function fully in helpers.c !

(To be sure, we could have put the contents of helpers.h and helpers.c in find.c

itself. But it’s sometimes better to organize programs into multiple files, especially when

some functions are essentially utility functions that might later prove useful to other

programs as well, much like those in the CS50 Library.) Take a peek at helpers.c

with, and you’ll see that search always returns false , whether or not value is in

values . Re-write search in such a way that it uses linear search, returning true

if value is in values and false if value is not in values . Take care to return

false right away if n isn’t even positive.

When ready to check the correctness of your program, try running the command below.

./generate 1000 50 | ./find 127

Because one of the numbers outputted by generate , when seeded with 50 , is 127 ,

your code should find that "needle"! By contrast, try running the command below as well.

./generate 1000 50 | ./find 128

Because 128 is not among the numbers outputted by generate , when seeded with

50 , your code shouldn’t find that needle. Best to try some other tests as well, as by running

generate with some seed, taking a look at its output, then piping that same output to

find , looking for a "needle" you know to be among the "hay".

Incidentally, note that main in find.c is written in such a way that find returns 0 if

the needle is found, else it returns 1 . You can check the so-called "exit code" with which

main returns by executing

Problem Set 3:

Game of Fifteen

14

echo $?

after running some other command. For instance, assuming your implementation of

search is correct, if you run

./generate 1000 50 | ./find 127

echo $?

you should see 0 , since 127 is, again, among the 1,000 numbers outputted by

generate when seeded with 50 , and so search (written by you) should return true ,

in which case main (written by us) should return (i.e., exit with) 0 . By contrast, assuming

your implementation of search is correct, if you run

./generate 1000 50 | ./find 128

echo $?

you should see 1 , since 128 is, again, not among the 1,000 numbers outputted by

generate when seeded with 50 , and so search (written by you) should return

false , in which case main (written by us) should return (i.e., exit with) 1 . Make sense?

When ready to check the correctness of your program officially with check50 , you may

execute the below.

check50 2015.fall.pset3.find helpers.c

Incidentally, be sure not to get into the habit of testing your code with check50 before

testing it yourself. (And definitely don’t get into an even worse habit of only testing your

code with check50 !) Suffice it to say check50 doesn’t exist in the real world, so running

your code with your own sample inputs, comparing actual output against expected output,

is the best habit to get into sooner rather than later. Truly, don’t do yourself a long-term

disservice!

Anyhow, if you’d like to play with the staff’s own implementation of find , you may execute

the below.

~cs50/pset3/find

Problem Set 3:

Game of Fifteen

15

Sorting

Alright, linear search is pretty meh. Recall from Week 0 that we can do better, but first

we’d best sort that hay.

sort

Notice that find.c calls sort , a function declared in helpers.h . Unfortunately, we

forgot to implement that function fully too in helpers.c ! Take a peek at helpers.c ,

and you’ll see that sort returns immediately, even though find 's main function does

pass it an actual array.

Now, recall the syntax for declaring an array. Not only do you specify the array’s type, you

also specify its size between brackets, just as we do for haystack in find.c :

int haystack[MAX];

But when passing an array, you only specify its name, just as we do when passing

haystack to sort in find.c :

sort(haystack, size);

(Why do you think we pass in the size of that array separately?)

When declaring a function that takes a one-dimensional array as an argument, though,

you don’t need to specify the array’s size, just as we don’t when declaring sort in

helpers.h (and helpers.c):

void sort(int values[], int n);

Go ahead and implement sort so that the function actually sorts, from smallest to largest,

the array of numbers that it’s passed, in such a way that its running time is in O(n2), where

n is the array’s size. Odds are you’ll want to implement bubble sort, selection sort, or

insertion sort, if only because we discussed them in Week 3. Just realize that there’s no

one "right" way to implement any of those algorithms; variations abound. In fact, you’re

Problem Set 3:

Game of Fifteen

16

welcome to improve upon them as you see fit, so long as your implementation remains in

O(n2). However, take care not to alter our declaration of sort . Its prototype must remain:

void sort(int values[], int n);

As this return type of void implies, this function must not return a sorted array; it must

instead "destructively" sort the actual array that it’s passed by moving around the values

therein. As we’ll discuss in Week 4, arrays are not passed "by value" but instead "by

reference," which means that sort will not be passed a copy of an array but, rather, the

original array itself.

Although you may not alter our declaration of sort , you’re welcome to define your own

function(s) in helpers.c that sort itself may then call.

We leave it to you to determine how best to test your implementation of sort . But don’t

forget that printf and GDB are your friends. And don’t forget that you can generate

the same sequence of pseudorandom numbers again and again by explicitly specifying

generate 's seed. Before you ultimately submit, though, be sure to remove any such

calls to printf , as we like our programs' outputs just they way they are!

Here’s Zamyla with some tips:

https://www.youtube.com/watch?v=U8k-0StE1Ik

And if you’d like to play with the staff’s own implementation of find , you may execute

the below.

~cs50/pset3/find

search

Now that sort (presumably) works, it’s time to improve upon search , the other function

that lives in helpers.c . Recall that your first version implemented linear search. Rip out

the lines that you wrote earlier (sniff) and re-implement search as Binary Search, that

divide-and-conquer strategy that we employed in Week 0. You are welcome to take an

iterative approach (as with a loop) or a recursive approach (wherein a function calls itself).

If you pursue the latter, though, know that you may not change our declaration of search ,

https://www.youtube.com/watch?v=U8k-0StE1Ik

Problem Set 3:

Game of Fifteen

17

but you may write a new, recursive function (that perhaps takes different parameters) that

search itself calls. When it comes time to submit this problem set, it suffices to submit

this new-and-improved version of search ; you needn’t submit your original version that

used linear search.

Here’s Zamyla again:

https://www.youtube.com/watch?v=7DSRJj7qfP8

The Game Begins

And now it’s time to play. The Game of Fifteen is a puzzle played on a square, two-

dimensional board with numbered tiles that slide. The goal of this puzzle is to arrange the

board’s tiles from smallest to largest, left to right, top to bottom, with an empty space in

board’s bottom-right corner, as in the below.

Sliding any tile that borders the board’s empty space in that space constitutes a "move."

Although the configuration above depicts a game already won, notice how the tile

numbered 12 or the tile numbered 15 could be slid into the empty space. Tiles may not be

moved diagonally, though, or forcibly removed from the board.

Although other configurations are possible, we shall assume that this game begins with

the board’s tiles in reverse order, from largest to smallest, left to right, top to bottom, with

an empty space in the board’s bottom-right corner. If, however, and only if the board

contains an odd number of tiles (i.e., the height and width of the board are even), the

positions of tiles numbered 1 and 2 must be swapped, as in the below. The puzzle

is solvable from this configuration.

https://www.youtube.com/watch?v=7DSRJj7qfP8

Problem Set 3:

Game of Fifteen

18

Okay, navigate your way to ~/workspace/pset3/fifteen , and take a look at

fifteen.c . Within this file is an entire framework for the Game of Fifteen. The challenge

up next is to complete this game’s implementation.

But first go ahead and compile the framework. (Can you figure out how?) And, even though

it’s not yet finished, go ahead and run the game. (Can you figure out how?) Odds are

you’ll want to run it in a larger terminal window than usual, which you can open clicking

the green plus (+) next to one of your code tabs and clicking New Terminal. Alternatively,

you can full-screen the terminal window toward the bottom of CS50 IDE’s UI (within the

UI’s "console") by clicking the Maximize icon in the console’s top-right corner.

Anyhow, it appears that the game is at least partly functional. Granted, it’s not much of a

game yet. But that’s where you come in!

questions

Read over the code and comments in fifteen.c and then answer the questions below

in questions.txt , which is a (nearly empty) text file that we included for you inside

of the distro’s fifteen directory. No worries if you’re not quite sure how fprintf or

fflush work; we’re simply using those to automate some testing.

1. Besides 4 × 4 (which are Game of Fifteen’s dimensions), what other dimensions does

the framework allow?

2. With what sort of data structure is the game’s board represented?

Problem Set 3:

Game of Fifteen

19

3. What function is called to greet the player at game’s start?

4. What functions do you apparently need to implement?

fifteen

Alright, get to it, implement this game. Remember, take "baby steps." Don’t try to bite off

the entire game at once. Instead, implement one function at a time and be sure that it

works before forging ahead. In particular, we suggest that you implement the framework’s

functions in this order: init , draw , move , won . Any design decisions not explicitly

prescribed herein (e.g., how much space you should leave between numbers when printing

the board) are intentionally left to you. Presumably the board, when printed, should look

something like the below, but we leave it to you to implement your own vision.

15 14 13 12

11 10 9 8

 7 6 5 4

 3 1 2 _

Incidentally, recall that the positions of tiles numbered 1 and 2 should only start off swapped

(as they are in the 4 × 4 example above) if the board has an odd number of tiles (as does

the 4 × 4 example above). If the board has an even number of tiles, those positions should

not start off swapped. And so they do not in the 3 × 3 example below:

8 7 6

5 4 3

2 1 _

Here, now, is Zamyla:

https://www.youtube.com/watch?v=CvmHt-IDhbs

To test your implementation of fifteen , you can certainly try playing it. (Know that you

can force your program to quit by hitting ctrl-c.) Be sure that you (and we) cannot crash your

https://www.youtube.com/watch?v=CvmHt-IDhbs

Problem Set 3:

Game of Fifteen

20

program, as by providing bogus tile numbers. And know that, much like you automated

input into find , so can you automate execution of this game. In fact, in ~cs50/pset3

are 3x3.txt and 4x4.txt , winning sequences of moves for a 3 × 3 board and a 4

× 4 board, respectively. To test your program with, say, the first of those inputs, execute

the below.

./fifteen 3 < ~cs50/pset3/3x3.txt

Feel free to tweak the appropriate argument to usleep to speed up animation. In fact,

you’re welcome to alter the aesthetics of the game. For (optional) fun with "ANSI escape

sequences," including color, take a look at our implementation of clear and check out

http://isthe.com/chongo/tech/comp/ansi_escapes.html for more tricks.

You’re welcome to write your own functions and even change the prototypes of functions

we wrote. But we ask that you not alter the flow of logic in main itself so that we can

automate some tests of your program once submitted. In particular, main must only

returns 0 if and when the user has actually won the game; non-zero values should be

returned in any cases of error, as implied by our distribution code. If in doubt as to whether

some design decision of yours might run counter to the staff’s wishes, simply contact your

teaching fellow.

If you’d like to play with the staff’s own implementation of fifteen , you may execute

the below.

~cs50/pset3/fifteen

If you’d like to see an even fancier version, one so good that it can play itself, try out our

solution to the Hacker Edition by executing the below.

~cs50/hacker3/fifteen

Instead of typing a number at the game’s prompt, type GOD instead. Neat, eh?

And if you’d like to check the correctness of your program officially with check50 , you

may execute the below. Note that check50 assumes that your board’s blank space

is implemented in board as 0 ; if you’ve chosen some other value, best to change

http://isthe.com/chongo/tech/comp/ansi_escapes.html

Problem Set 3:

Game of Fifteen

21

to 0 for check50 's sake. Also note that check50 assumes that you’re indexing

into board a la board[row][column] , not board[column][row] .

check50 2015.fall.pset3.fifteen fifteen.c

How to Submit

Step 1 of 2

1. When ready to submit, log into CS50 IDE5.

2. Toward CS50 IDE’s top-left corner, within its "file browser" (not within a terminal

window), control-click or right-click your pset3 folder and then select Download. You

should find that your browser has downloaded pset3.tar.gz , a "gzipped tarball"

that’s similar in spirit to a ZIP file.

3. In a separate tab or window, log into CS50 Submit6, logging in if prompted.

4. Click Submit toward the window’s top-left corner.

5. Under Problem Set 3 on the screen that appears, click Upload New Submission.

6. On the screen that appears, click Add files…. A window entitled Open Files should

appear.

7. Navigate your way to pset3.tar.gz . Odds are it’s in your Downloads folder or

wherever your browser downloads files by default. Once you find pset3.tar.gz ,

click it once to select it, then click Open (or the like).

8. Click Start upload to upload all of your files at once to CS50’s servers.

9. On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

return to CS50 Submit7 and repeat these steps. You may re-submit as many times as

you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

5 https://cs50.io/
6 https://cs50.harvard.edu/submit
7 https://cs50.harvard.edu/submit

https://cs50.io/
https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit
https://cs50.io/
https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit

Problem Set 3:

Game of Fifteen

22

Step 2 of 2

Head to https://forms.cs50.net/2015/fall/psets/3/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done! If you end up

resubmitting your files (per step 1 of 1), no need to resubmit the form.

This was Problem Set 3.

https://forms.cs50.net/2015/fall/psets/3/

	Problem Set 3: Game of Fifteen
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	Searching
	search

	Sorting
	sort
	search

	The Game Begins
	questions
	fifteen

	How to Submit
	Step 1 of 2
	Step 2 of 2

