
1

Problem Set 4: Forensics

This is CS50. Harvard University. Fall 2015.

Table of Contents

Objectives ... 1

Recommended Reading* ... 2

diff pset4 hacker4 .. 2

Academic Honesty ... 2

Reasonable ... 3

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 5

Getting Started ... 5

whodunit ... 7

resize .. 19

recover .. 20

Sanity Checks .. 23

Fabulous Prizes ... 24

How to Submit ... 24

Step 1 of 2 .. 24

Step 2 of 2 .. 25

Questions? Head to CS50 Discuss1 or join classmates at office hours2!

Objectives

• Acquaint you with file I/O.

• Get you more comfortable with data structures, hexadecimal, and pointers.

• Introduce you to computer scientists across campus.

• Help Mr. Boddy.

1 https://cs50.net/discuss
2 https://cs50.net/hours

https://cs50.net/discuss
https://cs50.net/hours
https://cs50.net/discuss
https://cs50.net/hours

Problem Set 4: Forensics

2

Recommended Reading*

• Chapters 9, 11, 14, and 16 of Programming in C

• http://www.cprogramming.com/tutorial/cfileio.html

• http://en.wikipedia.org/wiki/BMP_file_format

• http://en.wikipedia.org/wiki/Hexadecimal

• http://en.wikipedia.org/wiki/Jpg

* The Wikipedia articles are a bit dense; feel free to skim or skip!

diff pset4 hacker4

• Hacker Edition challenges you to reduce (and enlarge) BMPs.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter for disciplinary action and the outcome is punitive, the course reserves the right to

impose local sanctions on top of that outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

http://www.cprogramming.com/tutorial/cfileio.html
http://en.wikipedia.org/wiki/BMP_file_format
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Jpg

Problem Set 4: Forensics

3

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

for further disciplinary action except in cases of repeated acts.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at office hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

Problem Set 4: Forensics

4

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Problem Set 4: Forensics

5

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether or not taking the course for a letter grade, must ordinarily submit

this and all other problem sets to be eligible for a satisfactory grade unless granted an

exception in writing by the course’s heads.

Getting Ready

First, curl up with Jason’s short on file I/O and Rob’s short on structs. Just keep in mind

that Jason’s short happens to focus on ASCII (i.e., text) files as opposed to binary files

(like images). More on those later!

https://www.youtube.com/watch?v=KwvObCA04dU

Next, join Nate on a tour of valgrind , a command-line tool that will help you find

"memory leaks": memory that you’ve allocated (i.e., asked the operating system for), as

with malloc , but not freed (i.e., given back to the operating system).

https://www.youtube.com/watch?v=fvTsFjDuag8

Finally, remind yourself how GDB works if you’ve forgotten or not yet used! (It’s worth it!)

https://www.youtube.com/watch?v=-G_klBQLgdc

Getting Started

Welcome back!

As always, first open a terminal window and execute

https://www.youtube.com/watch?v=KwvObCA04dU
https://www.youtube.com/watch?v=fvTsFjDuag8
https://www.youtube.com/watch?v=-G_klBQLgdc

Problem Set 4: Forensics

6

update50

to make sure your workspace is up-to-date.

Like Problem Set 3, this problem set comes with some distribution code that you’ll need

to download before getting started. Go ahead and execute

cd ~/workspace

in order to navigate to your ~/workspace directory. Then execute

wget http://cdn.cs50.net/2015/fall/psets/4/hacker4/hacker4.zip

in order to download a ZIP (i.e., compressed version) of this problem set’s distro. If you

then execute

ls

you should see that you now have a file called hacker4.zip in your ~/workspace

directory. Unzip it by executing the below.

unzip hacker4.zip

If you again execute

ls

you should see that you now also have a hacker4 directory. You’re now welcome to

delete the ZIP file with the below.

rm -f hacker4.zip

Now dive into that hacker4 directory by executing the below.

Problem Set 4: Forensics

7

cd hacker4

Now execute

ls

and you should see that the directory contains the below.

bmp/ jpg/ questions.txt

How fun! Two subdirectories and a file. Who knows what could be inside! Let’s get started.

whodunit

If you ever saw Windows XP’s default wallpaper3, then you’ve seen a BMP. If you’ve ever

looked at a webpage, you’ve probably seen a GIF. If you’ve ever looked at a digital photo,

you’ve probably seen a JPEG. If you’ve ever taken a screenshot on a Mac, you’ve probably

seen a PNG. Read up online on the BMP, GIF, JPEG, and PNG file formats. Then, open

up questions.txt in ~/workspace/hacker4 , and tell us the below.

0. How many different colors does each format support?

1. Which of the formats supports animation?

2. What’s the difference between lossy and lossless compression?

3. Which of these formats is lossy-compressed?

Next, curl up with the article from MIT at http://cdn.cs50.net/2015/fall/psets/4/garfinkel.pdf.

Though somewhat technical, you should find the article’s language quite accessible. Once

you’ve read the article, answer each of the following questions in a sentence or more in

~/workspace/hacker4/questions.txt .

4. What happens, technically speaking, when a file is deleted on a FAT file system?

3 https://en.wikipedia.org/wiki/Bliss_(image)

https://en.wikipedia.org/wiki/Bliss_(image)
http://cdn.cs50.net/2015/fall/psets/4/garfinkel.pdf
https://en.wikipedia.org/wiki/Bliss_(image)

Problem Set 4: Forensics

8

5. What can someone like you do to ensure (with high probability) that files you delete

cannot be recovered?

Anyhow, welcome to Tudor Mansion. Your host, Mr. John Boddy, has met an untimely end

—he’s the victim of foul play. To win this game, you must determine whodunit .

Unfortunately for you (though even more unfortunately for Mr. Boddy), the only evidence

you have is a 24-bit BMP file called clue.bmp , pictured below, that Mr. Boddy whipped

up on his computer in his final moments. Hidden among this file’s red "noise" is a drawing

of whodunit .

You long ago threw away that piece of red plastic from childhood that would solve this

mystery for you, and so you must attack it as a computer scientist instead.

But, first, some background.

Perhaps the simplest way to represent an image is with a grid of pixels (i.e., dots), each of

which can be of a different color. For black-and-white images, we thus need 1 bit per pixel,

Problem Set 4: Forensics

9

as 0 could represent black and 1 could represent white, as in the below. (Image adapted

from http://www.brackeen.com/vga/bitmaps.html.)

In this sense, then, is an image just a bitmap (i.e., a map of bits). For more colorful images,

you simply need more bits per pixel. A file format (like GIF) that supports "8-bit color" uses

8 bits per pixel. A file format (like BMP, JPEG, or PNG) that supports "24-bit color" uses

24 bits per pixel. (BMP actually supports 1-, 4-, 8-, 16-, 24-, and 32-bit color.)

A 24-bit BMP like Mr. Boddy’s uses 8 bits to signify the amount of red in a pixel’s color, 8

bits to signify the amount of green in a pixel’s color, and 8 bits to signify the amount of blue

in a pixel’s color. If you’ve ever heard of RGB color, well, there you have it: red, green, blue.

If the R, G, and B values of some pixel in a BMP are, say, 0xff, 0x00, and 0x00 in

hexadecimal, that pixel is purely red, as 0xff (otherwise known as 255 in decimal) implies

"a lot of red," while 0x00 and 0x00 imply "no green" and "no blue," respectively. Given how

red Mr. Boddy’s BMP is, it clearly has a lot of pixels with those RGB values. But it also

has a few with other values.

Incidentally, HTML and CSS (languages in which webpages can be written) model colors

in this same way. If curious, see http://en.wikipedia.org/wiki/Web_colors for more details.

Now let’s get more technical. Recall that a file is just a sequence of bits, arranged in

some fashion. A 24-bit BMP file, then, is essentially just a sequence of bits, (almost)

every 24 of which happen to represent some pixel’s color. But a BMP file also contains

some "metadata," information like an image’s height and width. That metadata is stored

http://www.brackeen.com/vga/bitmaps.html
http://en.wikipedia.org/wiki/Web_colors

Problem Set 4: Forensics

10

at the beginning of the file in the form of two data structures generally referred to as

"headers" (not to be confused with C’s header files). (Incidentally, these headers have

evolved over time. This problem set only expects that you support version 4.0 (the latest)

of Microsoft’s BMP format, which debuted with Windows 95.) The first of these headers,

called BITMAPFILEHEADER , is 14 bytes long. (Recall that 1 byte equals 8 bits.) The

second of these headers, called BITMAPINFOHEADER , is 40 bytes long. Immediately

following these headers is the actual bitmap: an array of bytes, triples of which represent

a pixel’s color. (In 1-, 4-, and 16-bit BMPs, but not 24- or 32-, there’s an additional header

right after BITMAPINFOHEADER called RGBQUAD , an array that defines "intensity values"

for each of the colors in a device’s palette.) However, BMP stores these triples backwards

(i.e., as BGR), with 8 bits for blue, followed by 8 bits for green, followed by 8 bits for red.

(Some BMPs also store the entire bitmap backwards, with an image’s top row at the end

of the BMP file. But we’ve stored this problem set’s BMPs as described herein, with each

bitmap’s top row first and bottom row last.) In other words, were we to convert the 1-

bit smiley above to a 24-bit smiley, substituting red for black, a 24-bit BMP would store

this bitmap as follows, where 0000ff signifies red and ffffff signifies white; we’ve

highlighted in red all instances of 0000ff .

ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

0000ff ffffff ffffff ffffff ffffff ffffff ffffff 0000ff

0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

0000ff ffffff ffffff 0000ff 0000ff ffffff ffffff 0000ff

ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

Because we’ve presented these bits from left to right, top to bottom, in 8 columns, you can

actually see the red smiley if you take a step back.

To be clear, recall that a hexadecimal digit represents 4 bits. Accordingly, ffffff in

hexadecimal actually signifies 111111111111111111111111 in binary.

Okay, stop! Don’t proceed further until you’re sure you understand why 0000ff

represents a red pixel in a 24-bit BMP file.

Okay, let’s transition from theory to practice. Within CS50 IDE’s file browser, expand (i.e.,

open via the small triangle) hacker4 and then bmp. Double-click smiley.bmp, and you

Problem Set 4: Forensics

11

should see a tiny smiley face that’s only 8 pixels by 8 pixels. Via the drop-down menu in

that file’s newly opened tab, change 100% to 400% to zoom in a bit, and you should see

a larger, albeit blurrier, version. (So much for "enhance," huh?) Actually, this particular

image shouldn’t really be blurry, even when enlarged. CS50 IDE is simply trying to be

helpful (CSI-style) by "dithering" the image (i.e., by smoothing out its edges). Below’s what

the smiley looks like if you zoom in without dithering. At this zoom level, you can really see

the image’s pixels (as big squares).

Okay, go ahead and return your attention to a terminal window, and navigate your way

to ~/workspace/hacker4/bmp . (Remember how?) Let’s look at the underlying bytes

that compose smiley.bmp using xxd , a command-line "hex editor." Execute:

xxd -c 24 -g 3 -s 54 smiley.bmp

You should see the below; we’ve again highlighted in red all instances of 0000ff .

0000036: ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

000004e: ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

0000066: 0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

000007e: 0000ff ffffff ffffff ffffff ffffff ffffff ffffff 0000ff

0000096: 0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

00000ae: 0000ff ffffff ffffff 0000ff 0000ff ffffff ffffff 0000ff

00000c6: ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

00000de: ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

Problem Set 4: Forensics

12

In the leftmost column above are addresses within the file or, equivalently, offsets from

the file’s first byte, all of them given in hex. Note that 00000036 in hexadecimal is 54

in decimal. You’re thus looking at byte 54 onward of smiley.bmp . Recall that a 24-

bit BMP’s first 14 + 40 = 54 bytes are filled with metadata. If you really want to see that

metadata in addition to the bitmap, execute the command below.

xxd -c 24 -g 3 smiley.bmp

If smiley.bmp actually contained ASCII characters, you’d see them in xxd 's rightmost

column instead of all of those dots.

So, smiley.bmp is 8 pixels wide by 8 pixels tall, and it’s a 24-bit BMP (each of whose

pixels is represented with 24 ÷ 8 = 3 bytes). Each row (aka "scanline") thus takes up (8

pixels) × (3 bytes per pixel) = 24 bytes, which happens to be a multiple of 4. It turns out

that BMPs are stored a bit differently if the number of bytes in a scanline is not, in fact,

a multiple of 4. In small.bmp , for instance, is another 24-bit BMP, a green box that’s

3 pixels wide by 3 pixels wide. If you view it with Image Viewer (as by double-clicking it),

you’ll see that it resembles the below, albeit much smaller. (Indeed, you might need to

zoom in again to see it.)

Each scanline in small.bmp thus takes up (3 pixels) × (3 bytes per pixel) = 9 bytes,

which is not a multiple of 4. And so the scanline is "padded" with as many zeroes as it

takes to extend the scanline’s length to a multiple of 4. In other words, between 0 and 3

bytes of padding are needed for each scanline in a 24-bit BMP. (Understand why?) In the

case of small.bmp, 3 bytes' worth of zeroes are needed, since (3 pixels) × (3 bytes per

pixel) + (3 bytes of padding) = 12 bytes, which is indeed a multiple of 4.

To "see" this padding, go ahead and run the below.

Problem Set 4: Forensics

13

xxd -c 12 -g 3 -s 54 small.bmp

Note that we’re using a different value for -c than we did for smiley.bmp so that xxd

outputs only 4 columns this time (3 for the green box and 1 for the padding). You should

see output like the below; we’ve highlighted in green all instances of 00ff00 .

 0000036: 00ff00 00ff00 00ff00 000000

 0000042: 00ff00 ffffff 00ff00 000000

 000004e: 00ff00 00ff00 00ff00 000000

For contrast, let’s use xxd on large.bmp , which looks identical to small.bmp but, at

12 pixels by 12 pixels, is four times as large. Go ahead and execute the below; you may

need to widen your window to avoid wrapping.

xxd -c 36 -g 3 -s 54 large.bmp

You should see output like the below; we’ve again highlighted in green all instances of

00ff00

0000036: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

000005a: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

000007e: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

00000a2: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

00000c6: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

00000ea: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

000010e: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

0000132: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

0000156: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

000017a: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

Problem Set 4: Forensics

14

000019e: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

00001c2: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

Worthy of note is that this BMP lacks padding! After all, (12 pixels) × (3 bytes per pixel)

= 36 bytes is indeed a multiple of 4.

Knowing all this has got to be useful!

Okay, xxd only showed you the bytes in these BMPs. How do we actually get at them

programmatically? Well, in copy.c is a program whose sole purpose in life is to create

a copy of a BMP, piece by piece. Of course, you could just use cp for that. But cp isn’t

going to help Mr. Boddy. Let’s hope that copy.c does!

Go ahead and compile copy.c into a program called copy using make . (Remember

how?) Then execute a command like the below.

./copy smiley.bmp copy.bmp

If you then execute ls (with the appropriate switch), you should see that smiley.bmp

and copy.bmp are indeed the same size. Let’s double-check that they’re actually the

same! Execute the below.

diff smiley.bmp copy.bmp

If that command tells you nothing, the files are indeed identical. (Note that some programs,

like Photoshop, include trailing zeroes at the ends of some BMPs. Our version of copy

throws those away, so don’t be too worried if you try to copy a BMP that you’ve downloaded

or made only to find that the copy is actually a few bytes smaller than the original.) Feel

free to open both files in Ristretto Image Viewer (as by double-clicking each) to confirm

as much visually. But diff does a byte-by-byte comparison, so its eye is probably sharper

than yours!

So how now did that copy get made? It turns out that copy.c relies on bmp.h . Let’s

take a look. Open up bmp.h , and you’ll see actual definitions of those headers we’ve

mentioned, adapted from Microsoft’s own implementations thereof. In addition, that file

Problem Set 4: Forensics

15

defines BYTE , DWORD , LONG , and WORD , data types normally found in the world of

Win32 (i.e., Windows) programming. Notice how they’re just aliases for primitives with

which you are (hopefully) already familiar. It appears that BITMAPFILEHEADER and

BITMAPINFOHEADER make use of these types. This file also defines a struct called

RGBTRIPLE that, quite simply, "encapsulates" three bytes: one blue, one green, and one

red (the order, recall, in which we expect to find RGB triples actually on disk).

Why are these struct s useful? Well, recall that a file is just a sequence of bytes (or,

ultimately, bits) on disk. But those bytes are generally ordered in such a way that the first

few represent something, the next few represent something else, and so on. "File formats"

exist because the world has standardized what bytes mean what. Now, we could just read a

file from disk into RAM as one big array of bytes. And we could just remember that the byte

at location [i] represents one thing, while the byte at location [j] represents another.

But why not give some of those bytes names so that we can retrieve them from memory

more easily? That’s precisely what the struct s in bmp.h allow us to do. Rather than

think of some file as one long sequence of bytes, we can instead think of it as a sequence

of `struct`s.

Recall that smiley.bmp is 8 by 8 pixels, and so it should take up 14 + 40 + (8 × 8) × 3

= 246 bytes on disk. (Confirm as much if you’d like using ls .) Here’s what it thus looks

like on disk according to Microsoft:

Problem Set 4: Forensics

16

As this figure suggests, order does matter when it comes to struct s' members. Byte

57 is rgbtBlue (and not, say, rgbtRed), because rgbtBlue is defined first in

RGBTRIPLE . Our use, incidentally, of the attribute called packed ensures that

clang does not try to "word-align" members (whereby the address of each member’s

first byte is a multiple of 4), lest we end up with "gaps" in our `struct`s that don’t actually

exist on disk.

Problem Set 4: Forensics

17

Now go ahead and pull up the URLs to which BITMAPFILEHEADER and

BITMAPINFOHEADER are attributed, per the comments in bmp.h . You’re about to start

using MSDN (Microsoft Developer Network)!

Rather than hold your hand further on a stroll through copy.c , we’re instead going to ask

you some questions and let you teach yourself how the code therein works. As always,

man is your friend, and so, now, is MSDN. If not sure on first glance how to answer some

question, do some quick research and figure it out! You might want to turn to stdio.h at

https://reference.cs50.net/ as well.

Allow us to suggest that you also run copy within GDB while answering these questions

as follows:

1. Click Debug atop CS50 IDE, which should open a new terminal window (toward the

bottom of CS50 IDE) for GDB.

2. To the right of Command: within that terminal, you should see hacker4/bmp/

copy.c in a text box. To run copy within GDB with command-line arguments,

change the contents of that text box to be, e.g., copy.c smiley.bmp copy.bmp .

3. Set a breakpoint within main (as by clicking to the left of the line number for main).

4. Then click Run (or Stop and then Run) within GDB’s terminal window and step through

the program via GDB’s righthand panel, keeping an eye on bf and bi in particular.

In ~/workspace/hacker4/questions.txt , answer each of the following questions

in a sentence or more.

6. What’s stdint.h ?

7. What’s the point of using uint8_t , uint32_t , int32_t , and uint16_t in a

program?

8. How many bytes is a BYTE , a DWORD , a LONG , and a WORD , respectively?

9. What (in ASCII, decimal, or hexadecimal) must the first two bytes of any BMP file be?

(Leading bytes used to identify file formats (with high probability) are generally called

"magic numbers.)"

10.What’s the difference between bfSize and biSize ?

11.What does it mean if biHeight is negative?

https://reference.cs50.net/

Problem Set 4: Forensics

18

12.What field in BITMAPINFOHEADER specifies the BMP’s color depth (i.e., bits per

pixel)?

13.Why might fopen return NULL in copy.c:37 ?

14.Why is the third argument to fread always 1 in our code?

15.What value does copy.c:70 assign padding if bi.biWidth is 3 ?

16.What does fseek do?

17.What is SEEK_CUR ?

Okay, back to Mr. Boddy.

Write a program called whodunit in a file called whodunit.c that reveals Mr. Boddy’s

drawing.

Ummm, what?

Well, think back to childhood when you held that piece of red plastic over similarly hidden

messages. (If you remember no such piece of plastic, best to ask a classmate about his

or her childhood.) Essentially, the plastic turned everything red but somehow revealed

those messages. Implement that same idea in whodunit . Like copy , your program

should accept exactly two command-line arguments. And if you execute a command like

the below, stored in verdict.bmp should be a BMP in which Mr. Boddy’s drawing is

no longer covered with noise.

./whodunit clue.bmp verdict.bmp

Allow us to suggest that you begin tackling this mystery by executing the command below.

cp copy.c whodunit.c

Wink wink. You may be amazed by how few lines of code you actually need to write in

order to help Mr. Boddy.

There’s nothing hidden in smiley.bmp , but feel free to test your program out on its pixels

nonetheless, if only because that BMP is small and you can thus compare it and your own

Problem Set 4: Forensics

19

program’s output with xxd during development. (Or maybe there is a message hidden

in smiley.bmp too. No, there’s not.)

Rest assured that more than one solution is possible. So long as Mr. Boddy’s drawing is

identifiable (by you), no matter its legibility, Mr. Boddy will rest in peace.

Because whodunit can be implemented in several ways, you won’t be able to check

your implementation’s correctness with check50 . And, lest it spoil your fun, the staff’s

solution to whodunit is not available.

In ~/workspace/hacker4/questions.txt , answer the question below.

18.Whodunit?

resize

Well that was fun. Bit late for Mr. Boddy, though.

Alright, next challenge! Implement now in resize.c a program called resize that

resizes 24-bit uncompressed BMPs by a factor of f . Your program should accept exactly

three command-line arguments, per the below usage, whereby the first (f) must be a

floating-point value in (0.0, 100.0], the second the name of the file to be resized, and the

third the name of the resized version to be written.

Usage: ./resize f infile outfile

With a program like this, we could have created large.bmp out of small.bmp by

resizing the latter by a factor of 4.0 (i.e., by multiplying both its width and its height by

4.0), per the below.

./resize 4.0 small.bmp large.bmp

You’re welcome to get started by copying (yet again) copy.c and naming the copy

resize.c . But spend some time thinking about what it means to resize a BMP,

particularly if f is in (0.0, 1.0). (You may assume that f times the size of infile will

not exceed 232 - 1. As for a value of 1.0 for f , the result should indeed be an outfile

with dimensions identical to infile 's.) How you handle floating-point imprecision and

rounding is entirely up to you, as is how you handle inevitable loss of detail. Decide which of

Problem Set 4: Forensics

20

the fields in BITMAPFILEHEADER and BITMAPINFOHEADER you might need to modify.

Consider whether or not you’ll need to add or subtract padding to scanlines.

If you’d like to check the correctness of your program with check50 , you may execute

the below starting Mon 10/5.

check50 2015.fall.hacker4.resize bmp.h resize.c

If you’d like to play with the staff’s own implementation of resize in the workspace, you

may execute the below.

~cs50/hacker4/resize

If you’d like to peek at, e.g., large.bmp 's headers (in a more user-friendly way than

xxd allows), you may execute the below.

~cs50/hacker4/peek large.bmp

Better yet, if you’d like to compare your outfile’s headers against the staff’s, you might

want to execute commands like the below while inside your ~/workspace/hacker4/

bmp directory. (Think about what each is doing.)

./resize 4 small.bmp student.bmp

~cs50/hacker4/resize 4 small.bmp staff.bmp

~cs50/hacker4/peek student.bmp staff.bmp

If you happen to use malloc , be sure to use free so as not to leak memory. Try using

valgrind to check for any leaks!

recover

Alright, now let’s put all your new skills to the test.

In anticipation of this problem set, I spent the past several days snapping photos of

people I know, all of which were saved by my digital camera as JPEGs on a 1GB

CompactFlash (CF) card. (It’s possible I actually spent the past several days on Facebook

instead.) Unfortunately, I’m not very good with computers, and I somehow deleted them

Problem Set 4: Forensics

21

all! Thankfully, in the computer world, "deleted" tends not to mean "deleted" so much as

"forgotten." My computer insists that the CF card is now blank, but I’m pretty sure it’s lying

to me.

Write in ~/workspace/hacker4/jpg/recover.c a program that recovers these

photos.

Ummm.

Okay, here’s the thing. Even though JPEGs are more complicated than BMPs, JPEGs

have "signatures," patterns of bytes that can distinguish them from other file formats.

Specifically, the first three bytes of JPEGs are

0xff 0xd8 0xff

from first byte to third byte, left to right. The fourth byte, meanwhile, is either 0xe0 , 0xe1 ,

0xe2 , 0xe3 , 0xe4 , 0xe5 , 0xe6 , 0xe7 , 0xe8 , 0xe8 , 0xe9 , 0xea , 0xeb ,

0xec , 0xed , 0xee , of 0xef . Put another way, the fourth byte’s first four bits are

1110 .

Odds are, if you find this pattern of four bytes on a disk known to store photos (e.g., my CF

card), they demark the start of a JPEG. (To be sure, you might encounter these patterns

on some disk purely by chance, so data recovery isn’t an exact science.)

Fortunately, digital cameras tend to store photographs contiguously on CF cards, whereby

each photo is stored immediately after the previously taken photo. Accordingly, the start of

a JPEG usually demarks the end of another. However, digital cameras generally initialize

CF cards with a FAT file system whose "block size" is 512 bytes (B). The implication is

that these cameras only write to those cards in units of 512 B. A photo that’s 1 MB (i.e.,

1,048,576 B) thus takes up 1048576 ÷ 512 = 2048 "blocks" on a CF card. But so does a

photo that’s, say, one byte smaller (i.e., 1,048,575 B)! The wasted space on disk is called

"slack space." Forensic investigators often look at slack space for remnants of suspicious

data.

The implication of all these details is that you, the investigator, can probably write a

program that iterates over a copy of my CF card, looking for JPEGs' signatures. Each time

you find a signature, you can open a new file for writing and start filling that file with bytes

from my CF card, closing that file only once you encounter another signature. Moreover,

Problem Set 4: Forensics

22

rather than read my CF card’s bytes one at a time, you can read 512 of them at a time into

a buffer for efficiency’s sake. Thanks to FAT, you can trust that JPEGs' signatures will be

"block-aligned." That is, you need only look for those signatures in a block’s first four bytes.

Realize, of course, that JPEGs can span contiguous blocks. Otherwise, no JPEG could

be larger than 512 B. But the last byte of a JPEG might not fall at the very end of a block.

Recall the possibility of slack space. But not to worry. Because this CF card was brand-

new when I started snapping photos, odds are it’d been "zeroed" (i.e., filled with 0s) by the

manufacturer, in which case any slack space will be filled with 0s. It’s okay if those trailing

0s end up in the JPEGs you recover; they should still be viewable.

Now, I only have one CF card, but there are a whole lot of you! And so I’ve gone ahead

and created a "forensic image" of the card, storing its contents, byte after byte, in a file

called card.raw . So that you don’t waste time iterating over millions of 0s unnecessarily,

I’ve only imaged the first few megabytes of the CF card. But you should ultimately find

that the image contains 50 JPEGs. As usual, you can open the file programmatically with

fopen , as in the below.

FILE* file = fopen("card.raw", "r");

Notice, incidentally, that ~/workspace/hacker4/jpg contains only recover.c , but

it’s devoid of any code. (We leave it to you to decide how to implement and compile

recover !) For simplicity, you should hard-code "card.raw" in your program; your

program need not accept any command-line arguments. When executed, though, your

program should recover every one of the JPEGs from card.raw , storing each as a

separate file in your current working directory. Your program should number the files it

outputs by naming each ###.jpg , where ### is three-digit decimal number from 000

on up. (Befriend sprintf .) You need not try to recover the JPEGs' original names. To

check whether the JPEGs your program spit out are correct, simply double-click and take

a look! If each photo appears intact, your operation was likely a success!

Odds are, though, the JPEGs that the first draft of your code spits out won’t be correct.

(If you open them up and don’t see anything, they’re probably not correct!) Execute the

command below to delete all JPEGs in your current working directory.

rm *.jpg

Problem Set 4: Forensics

23

If you’d rather not be prompted to confirm each deletion, execute the command below

instead.

rm -f *.jpg

Just be careful with that -f switch, as it "forces" deletion without prompting you.

If you’d like to check the correctness of your program with check50 , you may execute

the below starting Mon 10/5.

check50 2015.fall.hacker4.recover recover.c

Lest it spoil your (forensic) fun, the staff’s solution to recover is not available.

As before, if you happen to use malloc , be sure to use free so as not to leak memory.

Try using valgrind to check for any leaks!

Sanity Checks

Before you consider this problem set done, best to ask yourself these questions and then

go back and improve your code as needed! Do not consider the below an exhaustive list of

expectations, though, just some helpful reminders. The checkboxes that have come before

these represent the exhaustive list! To be clear, consider the questions below rhetorical.

No need to answer them in writing for us, since all of your answers should be "yes!"

• Did you fill questions.txt with answers to all questions?

• Is the BMP that whodunit outputs legible (to you)?

• Does resize accept three and only three command-line arguments?

• Does resize ensure that n is in (0.0, 100.0]?

• Does resize update bfSize , biHeight , biSizeImage , and biWidth

correctly?

• Does resize add or remove padding as needed?

• Are you sure resize doesn’t have any memory leaks?

• Does recover output 50 JPEGs? Are all 50 viewable?

Problem Set 4: Forensics

24

• Does recover name the JPEGs ###.jpg , where ### is a three-digit number from

000 through 049 ?

• Are you sure recover doesn’t have any memory leaks?

• Are all of your files where they should be in ~/workspace/hacker4 ?

As always, if you can’t answer "yes" to one or more of the above because you’re having

some trouble, do drop by office hours or turn to CS50 Discuss4!

Fabulous Prizes

And now the real fun begins. You are hereby challenged to find as many of the computer

scientists featured in these photos as possible. To prove that you found someone, take

a photo of yourself posing (anywhere) with the computer scientist (in such a way that he

or she is aware of the photo and not just in the background). If a photo contains multiple

computer scientists, you’re welcome to pose with each of them separately. Upload your

photos (i.e., the photos you took, not the ones that you recovered) to a non-private album

somewhere that supports bulk downloads (e.g., workspace, Imgur, etc.), then email your

album’s URL to selfies@cs50.net5 by noon on Mon 10/19! We’ll add your photos to a

public gallery (unless you request otherwise).

For each (hey, that’s a loop) of the computer scientists you find, we’ll set you up with 1GB of

Dropbox space! In other words, if you snag n selfies, we’ll send you n GB of Dropbox space

(thanks to a former head TF who’s now at Dropbox)! (Though supplies may be limited.)

Moreover, whoever finds and photographs the most computer scientists (and, in the event

of a tie, submits first) shall be rewarded with a little something extra.

How to Submit

Step 1 of 2

1. When ready to submit, log into CS50 IDE6.

4 https://cs50.net/discuss
5 mailto:selfies@cs50.net
6 https://cs50.io/

https://cs50.net/discuss
mailto:selfies@cs50.net
https://cs50.io/
https://cs50.net/discuss
mailto:selfies@cs50.net
https://cs50.io/

Problem Set 4: Forensics

25

2. Toward CS50 IDE’s top-left corner, within its "file browser" (not within a terminal

window), control-click or right-click your hacker4 folder and then select Download.

You should find that your browser has downloaded hacker4.tar.gz , a "gzipped

tarball" that’s similar in spirit to a ZIP file.

3. In a separate tab or window, log into CS50 Submit7, logging in if prompted.

4. Click Submit toward the window’s top-left corner.

5. Under Problem Set 4 on the screen that appears, click Upload New Submission.

6. On the screen that appears, click Add files…. A window entitled Open Files should

appear.

7. Navigate your way to hacker4.tar.gz . Odds are it’s in your Downloads folder or

wherever your browser downloads files by default. Once you find hacker4.tar.gz ,

click it once to select it, then click Open (or the like).

8. Click Start upload to upload all of your files at once to CS50’s servers.

9. On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

return to CS50 Submit8 and repeat these steps. You may re-submit as many times as

you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2015/fall/psets/4/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done! If you end up

resubmitting your files (per step 1 of 1), no need to resubmit the form.

This was Problem Set 4.

7 https://cs50.net/submit
8 https://cs50.net/submit

https://cs50.net/submit
https://cs50.net/submit
https://forms.cs50.net/2015/fall/psets/4/
https://cs50.net/submit
https://cs50.net/submit

	Problem Set 4: Forensics
	Table of Contents
	Objectives
	Recommended Reading*
	diff pset4 hacker4
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	whodunit
	resize
	recover
	Sanity Checks
	Fabulous Prizes
	How to Submit
	Step 1 of 2
	Step 2 of 2

