This is CS50.
Harvard University Fall 2015

Quiz 0

out of 85 points

Print your name on the line below.

Do not turn this page over until told by the staff to do so.

This quiz is "closed-book." However, you may utilize during the quiz one two-sided
page (8.5" x 11") of notes, typed or written, and a pen or pencil, nothing else.

Scrap paper is included at this document's end.

Unless otherwise noted, you may call any functions we've encountered this term in code that you write.
You needn't comment code that you write, but comments may help in cases of partial credit.
If running short on time, you may resort to pseudocode for potential partial credit.
Unless otherwise specified, just a few sentences suffice when asked to explain.

Abby Lyons
Alex Goldberg
Alex Pong
Ali Monfre
Anita Xu
Annaleah Ernst
Arianna Benson
Brian Arroyo
Camille Rekhson
Carlos Mendizabal
Chris Lim
Collin Styring
Daven Farnham
David Armenta
David Hughes

Doug Lloyd

Circle your teaching fellow's name.

Emily Houlihan
Eric Ouyang
Eric Twark

Ezra Zigmond

Filip Bujaroski

George Zhang

Hannah Blumberg
Henrique Vaz
Isaac Xia
Jessica Zhu
Jon Kim

Jordan Canedy

Jordan Hayashi
Karl Otness
Kevin Dong

Kyle Kwong

Larry Guo
Larry Zhang
Leila Hofer
Linda Song

Marcus Powers
Maria Zlatkova
Mark Grozen-Smith
Michael Ge
Michael Patterson
MJ Richardson
Neel Mehta
Nicholas Larus-Stone
Nick Joseph
Patrick Pan
Peter Chang

Peter Jin

0<16

Pulak Goyal
Rob Bowden
Robbie Gibson
Robert Krabek
Ross Rheingans-Yoo
Sam Cheng
Samuel Green
Thomas Lively
Tim Tamm
Travis Yeh

Victor Domene
Ribeiro dos Santos

Walter Martin
Winnie Wu

Zack Chauvin

for staff use only

final score out of 85

This is CS50.
Harvard University Fall 2015

1<16

This is CS50.
Harvard University Fall 2015

Short sorts.

Suppose that the goal at hand is to sort, from left to right, smallest to largest, the array of integers
below with some algorithm:

0. (2 points.) Suppose that bubble sort is used to sort the array. Exactly what does the array look like
after just one iteration of bubble sort's outer loop?

1. (2 points.) Suppose that selection sort is used to sort the (original) array. Exactly what does the
array look like after just one iteration of selection sort's outer loop?

2. (2 points.) Suppose that insertion sort is used to sort the (original) array. Exactly what does the
array look like after just one iteration of insertion sort's outer loop?

Small problem.

3. (2 points.) Consider the program below.

#include <cs50.h>
#include <stdio.h>

int main(void)

{
string s = "cs50";
int size = sizeof(s);
printf ("%1i", size);

Suppose that this program, when executed, outputs 8, even though "cs50" has

only four characters. Why, then, is 8 outputted?
y y P for staff use only

points off

initials

2<16

This is CS50.
Harvard University Fall 2015

Role reversal.

4, (4 points.) Consider the email below from Rob.

From: Rob Bowden
Date: Wed, 14 Oct 2015 04:00:00 -0400
Subject: segfault

okay so i wrote this program that segfaults every time i try to run it with a
command-line argument:

#include <stdio.h>

int main(int argc, char* argv[])
{

// print out all command-line arguments except program's name
for (int i = 1; i != 0; i++)
{

printf ("$s\n", argv([i]);

any ideas as to why? lol it's late. thx
rObz

Write back to Rob, explaining why his code is segfaulting and how he can fix it.

for staff use only

points off

initials

3<16

This is CS50.
Harvard University Fall 2015

(4 points.) Consider the email below from Jason.

From: Jason Hirschhorn
Date: Wed, 14 Oct 2015 12:59:59 -0400
Subject: Sorting

Hey, so I know you mentioned that the pseudocode I wrote for bubble sort
is inefficient, but I don't see what the problem is. ~\ (YY) / Mind
letting me know what about my implementation makes it less efficient than

it could be? I do want to stick with bubble sort, though. I just want to
make it a bit better.

for 1 = 0 to 1 = n-2
for j = 0 to j = n-2
if arrayl[j] > arrayl[j+1]
swap array[j] with array[j+1]

Thanks! <3

Write back to Jason, explaining why his implementation of bubble sort isn't as efficient as it could
be and how he could improve it (without switching to some other algorithm altogether).

for staff use only

points off

initials

4<16

This is CS50.
Harvard University Fall 2015

Dollar store.

Consider the program below, which is intended to print $0.00 through $0.99, line by line.

#include <stdio.h>

int main (void)

{

for (float £ = 0.00; £ !'= 1.00; £ += 0.01)
{

printf ("$%.2f\n", f);
}

(2 points.) Unfortunately, when executed, this program loops infinitely, printing not only $0.00

through $0.99 but also $1.00, $1.01, and beyond, line by line. Explain why it does not, in fact,
stop after $0.99.

(2 points.) In the space below, complete the re-implementation of the function in such a way that
it does, in fact, print only $0.00 through $0.99, line by line.

#include <stdio.h>

int main (void)

{

for staff use only

points off

initials

5<16

This is CS50.
Harvard University Fall 2015

CS50 Library 2.0.

8.

(6 points.) Suppose that we'd like to add to the CS50 Library a function that copies a string.
Complete the implementation of CopyString, below, in such a way that the function returns a
character-for-character copy of s, with the copy's characters in their own block of dynamically
allocated memory, terminated with '\0'. Return the copy (i.e., the address of the copy's first
byte) unless some error occurs, in which case return NULL. Assume that s will not be NULL.

char* CopyString(char* s)
{

for staff use only

points off

initials

6<16

This is CS50.
Harvard University Fall 2015

9. (4 points.) Suppose that we'd like to add to the CS50 Library a function that gets two integers from
a user. Even though a function in C can return no more than one value, a function can take
multiple arguments. If those arguments are pointers, a function can effectively return multiple
values by changing the values to which those pointers point!

Complete the implementation of GetInts below in such a way that the function gets two
integers from a user, storing the first at the address in a and the second at the address in b.
Assume that neither a nor b will be NULL. And you are welcome to call GetInt.

#include <cs50.h>
#include <stdio.h>

void GetInts (int* a, int* Db);

int main (void)
{
int x, y;
GetInts (&%, &y);
printf("x is %i, y is %$i\n", x, v);

}

void GetInts (int* a, int* b)

{

for staff use only

points off

initials

7<16

This is CS50.
Harvard University Fall 2015

WTH.

Consider the program below.

#include <cs50.h>
#include <ctype.h>
#include <stdio.h>

char f(char c)
{
if (isalpha(c))
{
return c & Oxdf;
}
else

{

return c;
}
}

int main (void)
{

printf ("%c\n", f(GetChar()));
}

10. (2 points.) Suppose that a user inputs a followed by Enter when prompted by GetChar. What

would this program print? Recall that the ASCII value of a is 97 in decimal.

11. (2 points.) Suppose that a user inputs A followed by Enter when prompted by GetChar. What

would this program print? Recall that the ASCII value of A is 65 in decimal.

12. (1 point.) What would be a more appropriate, descriptive name for £ that makes clear its

behavior? Note that 'a' — 'A'is32,asis 'z'—'2".

8<16

for staff use only

points off

initials

This is CS50.
Harvard University Fall 2015

Cost-benefit analysis.

13. (9 points.) For each of the design decisions below, X instead of Y, cite one benefit and one cost of
using X instead of Y.

benefit cost

linked list
instead of array

merge sort
instead of insertion sort

binary search
instead of linear search

for staff use only

points off

initials

9<16

This is CS50.
Harvard University Fall 2015

Searching and sorted.

14.

15.

(7 points.) Consider the incomplete implementation of search, below, to which line numbers
have been added for the sake of discussion. Complete the implementation by filling the blanks in
lines 2,14 and 18.

O J oy U b w N

e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/**
* Searches sorted array of given length for value in O(
* time.

bool search(int value, int* array, int length)

{

}

if (length == 0)
{
return false;

}
int middle = length / 2;
if (value < array[middle])

{

return search (,

}

else if (array[middle] < wvalue)

{

return search (,

}

else

{

return true;

(4 points.) Complete the implementation of sorted, below, in such a way that the function
returns true if an array of some length is already sorted from smallest to largest, else it
returns false. Consider an empty array to be sorted. Assume that 1ength will not be negative.

bool sorted(int array[], int length)

{

10<16

for staff use only

points off

initials

This is CS50.
Harvard University Fall 2015

Jack is back.

16. (2 points.) Recall that Jack wears the same clothes every day. When he removes his clothes,
including his socks, he immediately washes them and then puts them away in a box. Come the
next morning, up he does hop. He goes to the box and gets his clothes off the top. Suffice it to say
Jack keeps his clothes in a stack! Explain why Jack's friend, Lou, instead recommends a queue.

17. (4 points.) Suppose that a stack for integers is defined per the below, wherein numbers is an array
for the stack's integers, CAPACITY (a constant) is the stack's capacity (i.e., maximal size), and
size is the stack's current size.

typedef struct

{
int numbers[CAPACITY];

int size;
}

stack;

Complete the implementation of push below in such a way that it pushes n onto a stack, s, if s
isn't already full. Assume that s has been declared globally. Consider s full only if its size equals
CAPACITY. No need to return a value, even if s is full. Your implementation should operate in
constant time.

void push (int n)

{

for staff use only

points off

initials

11<16

18.

This is CS50.
Harvard University Fall 2015

(4 points.) Suppose that a queue for integers is defined per the below, wherein numbers is an
array for the queue's integers, CAPACITY (a constant) is the queue's capacity (i.e., maximal size),
size is the queue's current size, and front is the index of the integer at the front of the queue.

typedef struct

{
int front;
int numbers[CAPACITY];
int size;

}

queue;

Complete the implementation of enqueue below in such a way that it inserts n into a queue, q, if
q isn't already full. Assume that g has been declared globally. Consider g full only if its size
equals CAPACITY. No need to return a value, even if g is full. Your implementation should operate
in constant time.

void enqueue (int n)

{

for staff use only

points off

initials

12<16

This is CS50.
Harvard University Fall 2015

(Re)curses.

19. (2 points.) Consider the program below. Recall that an unsigned int is just a non-negative
integer.

#include <stdio.h>

void f (unsigned int i)
{

if (i / 10 !'= 0)

{

£(i / 10);

}

printf ("%i", 1 % 10);
}

int main(void)
{

£(123);
}

Exactly what does this program print when executed?

Bold claims. (2 points each.)
For each of the claims below, explain why it is true or not true.

20. "An algorithm that runs in O(log n) time is always faster than an algorithm that runs in O(n?) time."

21. ‘"Linear searchisin Q(1)."

22. "Selection sort is in Q(n?%)."

for staff use only

points off

initials

13<16

0] (o8

23.

This is CS50.
Harvard University Fall 2015

(4 points.) You may have noticed that products in stores tend to have Universal Product Codes
(UPCs), numbers (represented with barcodes) that uniquely identify them and allow cashiers to
scan them at checkout. Consider, for instance, the below UPC from a 5-pound bag of Smarties
(i.e., America's Favorite Candy Roll). Ignore the gaps between the UPC's numbers; the barcode
represents 011206005003.

11

206 00500

It turns out that if the UPC for some package of Smarties starts with 011206, then the candy was
manufactured in a facility that's gluten-free. Complete the implementation of gf below in such a
way that the function returns true if and only if code, inputted by a cashier as a string
(e.g., "011206005003"), starts with 011206. Assume that code will be entirely numeric and of
length 12.

#include <cs50.h>
#include <stdio.h>
#include <string.h>

bool gf (string code);

int main(void)
{
if (gf(GetString()))
{
printf ("gluten-free\n") ;
}
else
{
printf ("not gluten-free\n");
}
}

bool gf(string code)
{

for staff use only

points off

initials

14<16

This is CS50.
Harvard University Fall 2015

Similar but different. (2 points each.)
For each of the pairs below, X versus Y, distinguish X from Y, making clear the meaning of each.

24. local variable versus global variable

25. NULL versus '"\0'

26. stack versus heap

27. #include <cs50.h>versus -1cs50

for staff use only

points off

initials

15<16

