
Quiz 0 Review Session
October 11th, 2015

Topics (non-exhaustive)
● Binary. ASCII. Algorithms. Pseudocode. Source code. Compiler. Object

code. Scratch. Statements. Boolean expressions. Conditions. Loops.
Variables. Functions. Arrays. Threads. Events.

● Linux. C. Compiling. Libraries. Types. Standard output.
● Casting. Imprecision. Switches. Scope. Strings. Arrays. Cryptography.
● Command-line arguments. Searching. Sorting. Bubble sort. Selection sort.

Insertion sort. O. Ω.Θ. Recursion. Merge Sort.
● Stack. Debugging. File I/O. Hexadecimal. Strings. Pointers. Dynamic

memory allocation.
● Heap. Buffer overflow. Linked lists.
● Hash tables. Tries. Trees. Stacks. Queues.

Official Word

cdn.cs50.net/2015/fall/quizzes/0/harvard.html

Tips for Quiz 0

● practice coding on paper (e.g., strlen, atoi)
● be familiar with your problem sets!
● do previous quizzes under time constraint
● creating your reference sheet is a great way to

study

Data Types and Sizes

● char : 1 byte
● int : 4 bytes
● long long : 8 bytes
● float : 4 bytes
● double : 8 bytes
● <type>* : 8 bytes

Binary
conversion:

binary to decimal decimal to binary
1010102 = 5010 =

addition:
0 1 0 0 1

+ 1 0 0 1 1

Binary
conversion:

binary to decimal decimal to binary
1010102 = 42 5010 =

addition:
0 1 0 0 1

+ 1 0 0 1 1

Binary
conversion:

binary to decimal decimal to binary
1010102 = 42 5010 = 110010

addition:
0 1 0 0 1

+ 1 0 0 1 1

Binary
conversion:

binary to decimal decimal to binary
1010102 = 42 5010 = 110010

addition:
0 1 0 0 1

+ 1 0 0 1 1

1 1 1 0 0

11

Hexadecimal
conversion:

binary to hexadecimal hexadecimal to binary
111111112 = 0x5A =

Hexadecimal
conversion:

binary to hexadecimal hexadecimal to binary
111111112 = 0xFF 0x5A =

Hexadecimal
conversion:

binary to hexadecimal hexadecimal to binary
111111112 = 0xFF 0x5A = 01011010

Bitwise Operators

& AND
● gives 1 if both arguments

are 1
| OR

● gives 1 if at least 1
argument is 1

^ XOR
● gives 1 if exactly 1

argument is 1

~ NOT
● flips the given bit

<< left shift
>> right shift

● shifts a bit the given
number of places in the
given direction

Allow us to manipulate individual bits

Bitwise Operators

0 & 1 =
1 & 1 =
0 | 1 =
1 | 1 =
0 ^ 1 =
1 ^ 1 =

~0 =
~1 =

int x = 8;
int y = x << 3;
y =

Bitwise Operators

0 & 1 = 0
1 & 1 = 1
0 | 1 =
1 | 1 =
0 ^ 1 =
1 ^ 1 =

~0 =
~1 =

int x = 8;
int y = x << 3;
y =

Bitwise Operators

0 & 1 = 0
1 & 1 = 1
0 | 1 = 1
1 | 1 = 1
0 ^ 1 =
1 ^ 1 =

~0 =
~1 =

int x = 8;
int y = x << 3;
y =

Bitwise Operators

0 & 1 = 0
1 & 1 = 1
0 | 1 = 1
1 | 1 = 1
0 ^ 1 = 1
1 ^ 1 = 0

~0 =
~1 =

int x = 8;
int y = x << 3;
y =

Bitwise Operators

0 & 1 = 0
1 & 1 = 1
0 | 1 = 1
1 | 1 = 1
0 ^ 1 = 1
1 ^ 1 = 0

~0 = 1
~1 = 0

int x = 8;
int y = x << 3;
y =

Bitwise Operators

0 & 1 = 0
1 & 1 = 1
0 | 1 = 1
1 | 1 = 1
0 ^ 1 = 1
1 ^ 1 = 0

~0 = 1
~1 = 0

int x = 8;
int y = x << 3;
y = 64

ASCII - Math
Because characters are fundamentally just numbers, we
can do math with chars!

int A = 65;
int B = 'A' + 1;
char C = 'D' - 1;
char D = 68;
printf("%c %c %c %c", A, B, C, D);

What will this print out?

ASCII - Math
Because characters are fundamentally just numbers, we
can do math with chars!

int A = 65;
int B = 'A' + 1;
char C = 'D' - 1;
char D = 68;
printf("%c %c %c %c", A, B, C, D);

What will this print out? A B C D

Scope
Determines the region where a variable exists. Within this
area, we can access or change the variable
● Global

○ Entire program has access to it
○ Exist for the duration of the program

● Local
○ Confined to a region
○ Examples: Within specific functions, if statements,

for loops

Prototypes

When we define a function after we plan to use
it, we must include a prototype!

<return type> function_name(arguments);

#include <stdio.h>

int cube(int input);

int main(void)
{

int x = 2;
printf("x is %d\n", x);
x = cube(x);
printf("x is %d\n", x);

}

int cube(int input)
{

return input * input * input;
}

prototype

Floating-Point Imprecision

infinitely many real numbers (even between 0
and 1!) but finitely many bits to represent real
numbers
⇒ imprecision

Pointers

0x0 0x1

0x4 0x5 0x6

0x90x8 0xA 0xB

0x2

0x7

0x3

Memory

Creating Pointers

<type>* <variable name>

Examples:
int* x;

char* y;
float* z;

Referencing and Dereferencing

Referencing (i.e., address of):
&<variable name>

Dereferencing:
*<pointer name>

Under the hood...

int x = 5;

int* ptr = &x;

int copy = *ptr;

Variable Address Value

x 0x04 5

ptr

copy

Under the hood...

int x = 5;

int* ptr = &x;

int copy = *ptr;

Variable Address Value

x 0x04 5

ptr 0x08 0x04

copy

Under the hood...

int x = 5;

int* ptr = &x;

int copy = *ptr;

Variable Address Value

x 0x04 5

ptr 0x08 0x04

copy 0x10 5

#include <stdio.h>

void to_five(int a)
{
 3:

a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(x);
 5:

printf("%d\n", x);
}

Buggy

x a

1:

2:

3:

4:

5:

#include <stdio.h>

void to_five(int a)
{
 3:

a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(x);
 5:

printf("%d\n", x);
}

Buggy

x a

N/A N/A1:

2:

3:

4:

5:

#include <stdio.h>

void to_five(int a)
{
 3:

a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(x);
 5:

printf("%d\n", x);
}

Buggy

x a

N/A N/A

3 N/A

1:

2:

3:

4:

5:

#include <stdio.h>

void to_five(int a)
{
 3:

a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(x);
 5:

printf("%d\n", x);
}

Buggy

x a

N/A N/A

3 N/A

3 3

1:

2:

3:

4:

5:

#include <stdio.h>

void to_five(int a)
{
 3:

a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(x);
 5:

printf("%d\n", x);
}

Buggy

x a

N/A N/A

3 N/A

3 3

3 5

1:

2:

3:

4:

5:

#include <stdio.h>

void to_five(int a)
{
 3:

a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(x);
 5:

printf("%d\n", x);
}

Buggy

x a

N/A N/A

3 N/A

3 3

3 5

3 N/A

1:

2:

3:

4:

5:

#include <stdio.h>

void to_five(int* a)
{
 3:

*a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(&x);
 5:

printf("%d\n", x);
}

Fixed

x a *a

1:

2:

3:

4:

5:

Assume &x == 0x12

#include <stdio.h>

void to_five(int* a)
{
 3:

*a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(&x);
 5:

printf("%d\n", x);
}

Fixed

x a *a

N/A N/A N/A1:

2:

3:

4:

5:

Assume &x == 0x12

#include <stdio.h>

void to_five(int* a)
{
 3:

*a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(&x);
 5:

printf("%d\n", x);
}

Fixed

x a *a

N/A N/A N/A

3 N/A N/A

1:

2:

3:

4:

5:

Assume &x == 0x12

#include <stdio.h>

void to_five(int* a)
{
 3:

*a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(&x);
 5:

printf("%d\n", x);
}

Fixed

x a *a

N/A N/A N/A

3 N/A N/A

3 0x12 3

1:

2:

3:

4:

5:

Assume &x == 0x12

#include <stdio.h>

void to_five(int* a)
{
 3:

*a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(&x);
 5:

printf("%d\n", x);
}

Fixed

x a *a

N/A N/A N/A

3 N/A N/A

3 0x12 3

5 0x12 5

1:

2:

3:

4:

5:

Assume &x == 0x12

#include <stdio.h>

void to_five(int* a)
{
 3:

*a = 5;
 4:
}

int main(void)
{
 1:

int x = 3;
 2:

to_five(&x);
 5:

printf("%d\n", x);
}

Fixed

x a *a

N/A N/A N/A

3 N/A N/A

3 0x12 3

5 0x12 5

5 N/A N/A

1:

2:

3:

4:

5:

Assume &x == 0x12

Pointer Arithmetic

Adding/subtracting i adjusts the pointer by
i * sizeof(<type of the pointer>) bytes

x y

5int x = 5;

int* y = &x;

y += 1;

Assume &x == 0x04

Pointer Arithmetic

Adding/subtracting i adjusts the pointer by
i * sizeof(<type of the pointer>) bytes

x y

5

5 0x04

int x = 5;

int* y = &x;

y += 1;

Assume &x == 0x04

Pointer Arithmetic

Adding/subtracting i adjusts the pointer by
i * sizeof(<type of the pointer>) bytes

x y

5

5 0x04

5 0x08

int x = 5;

int* y = &x;

y += 1;

Assume &x == 0x04

Pointers and Arrays

int array[3];

*array = 1;
*(array + 1) = 2;
*(array + 2) = 3;

1 2 3
10 2

Memory
● stack: block of memory set aside when a

program starts running
○ each function gets its own stack frame
○ stack overflow: when the stack runs out of

space, results in a program crash

● heap: region of unused memory that can
be dynamically allocated using malloc
(and realloc, etc.)

● don’t forget to free dynamically allocated
memory to prevent memory leaks

Allocating Memory
void* malloc(<size in bytes>);

int* ptr = malloc(sizeof(int) * 10);

…
free(ptr);

Don’t forget to check for NULL!

MemoryBuffer Overflow

adapted from http://en.wikipedia.org/wiki/Stack_buffer_overflow

MemoryBuffer Overflow

adapted from http://en.wikipedia.org/wiki/Stack_buffer_overflow

Common Error Messages

● segmentation fault
○ when a program attempts to access memory that it is not

allowed to access
○ check for NULL!

● implicit declaration of function
○ when a program is defined after the main function, and

no prototype is present above
○ when a program is missing a necessary #include

● undeclared identifier
○ when a variable has not been declared

Recursion

● a programming concept whereby a function
calls itself

● don’t forget to include a base case!
● pros:

○ can lead to more concise, elegant code
○ some algorithms lend themselves to recursion

■ e.g., merge sort

linear
search

binary
search

bubble
sort

selection
sort

insertion
sort

merge sort

O n log(n) n2 n2 n2 n log(n)

Ω 1 1 n n2 n n log(n)

Θ n2 n log(n)

Search and Sort Run Times

O upper bound (in the worst case)
Ω lower bound (in the best case)
Θ identical upper and lower bound

Structs
Allow us to create our own data type or
container to hold data of different types

typedef struct

{

int id;

 string name;

}

student;

Creating and Accessing Structs
● Declare using the struct name as the

variable type
● Access using the . operator

int main(void)
{

student student_1;
student_1.id = 1;
student_1.name = "Daven";

}

Creating and Accessing Structs
● If we have a pointer to a struct we can use ->

notation

int main(void)
{

student student_1;
student* ptr = &student_1;

ptr->name = "Rob";
(*ptr).name = "Rob";

}

} equivalent

Linked Lists

2 3 9
head

Nodes

n

typedef struct node

{

int n;

struct node* next;

}

node;

next

Search

2 3 9
head

bool search(int n, node* list)

{

// points at current node

node* ptr = list;

// traverse the list until the end

while (ptr != NULL)

{

// check if we found value

if (ptr->n == n)

 {

return true;

 }

// move on to next element

ptr = ptr->next;

}

return false;

}

Insertion

2 3 9
head

1

Insertion

2 3 9
head

1

bool insert(int n)

{

// create new node

node* new = malloc(sizeof(node));

// check for NULL

if (new == NULL)

{

return false;

}

// initialize new node

new->n = n;

new->next = NULL;

// insert new node at head

new->next = head;

head = new;

return true;

}

Stacks

● first-in, last-out (FILO)
● elements are successively pushed down as

other items are added
● elements are pushed on and popped off
● keep track of both the size and capacity

○ you need not keep track of capacity if you use a linked
list rather than an array

Queues

● first-in, first-out (FIFO)
● picture a line!
● elements are enqueued and dequeued
● keep track of the size, capacity, and head

○ you need not keep track of capacity if you use a linked
list rather than an array

Hash Table
● data structure where the position of each element is

decided by a hash function

https://study.cs50.net

Collisions

https://study.cs50.net

Linear Probing

https://study.cs50.net

Separate Chaining

https://study.cs50.net

Trees and Tries

● tree: a data structure in which data is
organized hierarchically
○ e.g., binary search tree

● trie: special kind of tree that behaves like a
multi-level hash table

Trees

https://study.cs50.net

Binary Trees

https://study.cs50.net

(Note: not a binary search tree!)

Tries

https://study.cs50.net

Tries

● pro: provide constant time lookup (in
theory)

● con: use large amounts of memory!

Questions?

And finally...

RELAX AND SLEEP!
(you’ll do great! =D)

