This is CS50

Section, Week 3
TA: Andi Peng

Agenda

 Announcements

« GDB

« Sorts (selection, insertion, bubble, merge)
« Asymptotic Notation (O, Q)

* Binary Search

* pset3

Announcements

» Grading
« Commenting
« Make sure to test your code with Check50!

* Postmortems
 Late psets will be zeroed

* Office hours
« Come early in the week (woo Mondays)
« Come prepared to ask questions

* Quiz 0: October 14 or 15

GDB

Up to now, we've been debugging using printf statements...

GDB

Your new best friend!

« Set a breakpoint
* Next

« Step over

« Step into

Selection Sort

Algorithm

1. Find the smallest unsorted value
2. Swap that value with the first unsorted value

3. Repeat from Step 1 if there are still unsorted items

All values start as

0
3 4

Sorted

First pass:
2 is smallest, swap with 3

Sorted

Swap

Second pass:
3 is smallest, swap with 5

Sorted

A

Third pass:
4 is smallest, swap with 5

Sorted

Swap

Fourth pass:
5 is smallest, swap with 6

Sorted

Fifth pass:
6 is the only value left, done!

Sorted

Pseudocode Time!

fori=0ton-1
min =i
forj=iton-1
if array[j + 1] < array[min]
min=j+ 1;
if min 1=
swap array[min] and array]i]

What's the best case runtime of
selection sort?

What's the worst case runtime of
selection sort?

What's the expected runtime of
selection sort?

Bubble Sort

Algorithm

1. Step through entire list, swapping adjacent values if not
in order

* 2. Repeat from step 1 if any swaps have been made

E

First pass: 3 swaps

E
E

Second pass: 2 swaps

0
A

0
A

Third pass: 1 swap

0
0
24

Fourth pass: 0 swaps

0
0
24

initialize counter

do
{
set counterto 0
iterate through entire array
if array[n] > array[n+1]
swap them
increment counter
}

while (counter > 0)

What's the worst case runtime of
bubble sort?

What's the best case runtime of
bubble sort?

Insertion Sort

Algorithm

* 1. Data is divided into sorted and unsorted portions

« 2. One by one, the unsorted values are inserted into their
appropriate positions in the sorted subarray

All values start as

0
3 4

Sorted

Add first value to Sorted

Sorted

A

5>3
insert 5 to right of 3

Sorted

2<5and2<3
shift 3and 5
insert 2 to left of 3

Sorted

/\
A

~"

6>5
insert 6 to right of 5

Sorted

4
A

4<6,4<5,and4>3
shift 5 and 6
insert 4 to right of 3

Sorted

For each unsorted element n:

1. Determine where in sorted portion of the list to
insert n

2. Shift sorted elements rightwards as necessary to
make room for n

3. Insert n into sorted portion of the list

fori=0ton-1
element = array]i]
j=i
while (j > 0 and array|j - 1] > element)
array[j] = array|j - 1]
j=j-1
array[j] = element

What's the worst case runtime of
insertion sort?

What's the best case runtime of
insertion sort?

What's the difference
between these three
types of sorts?

Merge Sort

Algorithm

* 1. Divide an unsorted array in two
2. Sort the two halves of that array recursively

On input of n elements:
Ifn<2
Return.
Else
Sort left half of elements.
Sort right half of elements.
Merge sorted halves.

Halve until each subarray is size 1

4

Merge Sorted Halves

4
21314(5

sort (int array[], int start, int end)

{
if (end > start)

{
int middle = (start + end) / 2;

sort(array, start, middle);
sort(array, middle + 1, end);

merge(array, start, middle, middle + 1, end);

What's the best case runtime of merge
Jo] g f¢

What's the worst case runtime of
merge sort?

What's the expected runtime of merge
sort?

n log>n

log,n
I log,logsn

10

Sort
ﬂ nlogn

0| | n | |niogn

Searching

* Linear search: search every element of a list

 Binary Search: Divide and Conquer!

Searching

* Linear search: search every element of a list

 Binary Search: Divide and Conquer!

Binary Search

time to solve

n/2

size of problem

log n

Does the array contain 7?

0 4 6
1 /

0 4 6
1 7/
Is array[3] == 77

Is array[3] < 7?
Is array[3] > 7?

T

Is array[5] == 77
Is array[5] < 7?
Is array[5] > 7?

Is array[4] == 77
Is array[4] < 7?
Is array[4] > 7?

Pseudocode Time!

bool search(int value, int values[], int n)

binary search on values|[] of size n, searching for
value

Pset3: The Game of Fifteen

Find
* generate.c
* find.c

* helpers.c

* Linear search

« Sort
 Binary search

Pset3: The Game of Fifteen

Fifteen
e fifteen.c

e 2-dimensional
array

Pset3: The Game of Fifteen

Init()
* Create a board with numbers 15-1

* Understand how to put a tile onto the
board at a specific place

Do the 1-2 switch if needed at the end

Pset3: The Game of Fifteen

Draw()

« Understand how to get the value of the
board at a specific location

* [terate over board and print values

 Make sure to check if the board is
returning a number or a blank!

Pset3: The Game of Fifteen

Move()

« Understand that a parameter (user input)
Is determining which block to move

* Figure out how to get the direction that the
tile can move, and if it can’t move it return
ILLEGAL

« Perhaps think about creating a function
that actually moves the pieces

Pset3: The Game of Fifteen

Won()

* We know what every tile is supposed to
be

* |terate over the board and check to see if
all the values are correct

* Think about initializing a counter to check
the correctness of each value with a loop

