Recursion

Recursion

- We might describe an implementation of an algorithm as being particularly "elegant" if it solves a problem in a way that is both interesting and easy to visualize.
- The technique of recursion is a very common way to implement such an "elegant" solution.
- The definition of a recursive function is one that, as part of its execution, invokes itself.

Recursion

- The factorial function ($n!$) is defined over all positive integers.
- n ! equals all of the positive integers less than or equal to n, multiplied together.
- Thinking in terms of programming, we'll define the mathematical function n ! as fact (n).

Recursion

$$
\begin{aligned}
& \operatorname{fact}(1)=1 \\
& \operatorname{fact}(2)=2 * 1 \\
& \operatorname{fact}(3)=3 * 2 * 1 \\
& \operatorname{fact}(4)=4 * 3 * 2 * 1 \\
& \operatorname{fact}(5)=5 * 4 * 3 * 2 * 1
\end{aligned}
$$

Recursion

$$
\begin{aligned}
& \operatorname{fact}(1)=1 \\
& \operatorname{fact}(2)=2 * \operatorname{fact}(1) \\
& \operatorname{fact}(3)=3 * 2 * 1 \\
& \operatorname{fact}(4)=4 * 3 * 2 * 1 \\
& \operatorname{fact}(5)=5 * 4 * 3 * 2 * 1
\end{aligned}
$$

Recursion

$$
\begin{aligned}
& \operatorname{fact}(1)=1 \\
& \operatorname{fact}(2)=2 * \operatorname{fact}(1) \\
& \operatorname{fact}(3)=3 * \operatorname{fact}(2) \\
& \operatorname{fact}(4)=4 * 3 * 2 * 1 \\
& \operatorname{fact}(5)=5 * 4 * 3 * 2 * 1
\end{aligned}
$$

Recursion

$$
\begin{aligned}
\operatorname{fact}(1) & =1 \\
\operatorname{fact}(2) & =2 * \operatorname{fact}(1) \\
\operatorname{fact}(3) & =3 * \operatorname{fact}(2) \\
\operatorname{fact}(4) & =4 * \operatorname{fact}(3) \\
\operatorname{fact}(5) & =5 * 4 * 3 * 2 * 1
\end{aligned}
$$

Recursion

$$
\begin{aligned}
\operatorname{fact}(1) & =1 \\
\operatorname{fact}(2) & =2 * \operatorname{fact}(1) \\
\operatorname{fact}(3) & =3 * \operatorname{fact}(2) \\
\operatorname{fact}(4) & =4 * \operatorname{fact}(3) \\
\operatorname{fact}(5) & =5 * \operatorname{fact}(4)
\end{aligned}
$$

Recursion
fact(n) $=n * \operatorname{fact}(n-1)$

Recursion

- This forms the basis for a recursive definition of the factorial function.
- Every recursive function has two cases that could apply, given any input.
- The base case, which when triggered will terminate the recursive process.
- The recursive case, which is where the recursion will actually occur.

Recursion

fact(1) $=1$
fact(2) $=2$ * fact(1)
fact(3) $=3$ * fact(2)
fact(4) $=4 *$ fact(3)
fact(5) $=5$ * fact(4)

Recursion

$$
\begin{aligned}
& \text { int fact(int } \mathrm{n}) \\
& \left\{\begin{array}{l}
\text { // base case } \\
\text { \{ } \\
\text { // recursive case }
\end{array}\right.
\end{aligned}
$$

Recursion

$$
\begin{array}{ll}
\text { int fact(int } \mathrm{n}) \\
\begin{cases}\text { \{f }(\mathrm{n}==1) \\
\{ & \\
& \text { return } 1 ;\end{cases} \\
\text { \} } &
\end{array}
$$

Recursion

fact(1) $=1$
fact(2) $=2$ * fact(1)
fact(3) $=3$ * fact(2)
fact(4) $=4 *$ fact(3)
fact(5) $=5$ * fact(4)

Recursion

$$
\begin{array}{ll}
\text { int fact(int } \mathrm{n}) \\
\begin{cases}\text { \{f }(\mathrm{n}==1) \\
\{ & \\
& \text { return } 1 ;\end{cases} \\
\text { \} } &
\end{array}
$$

Recursion

```
int fact(int n)
{
    return 1;
    }
    else
    {
    return n * fact(n-1);
    }
}
```


Recursion

```
int fact(int n)
{
    return 1;
    }
    else
    {
    return n * fact(n-1);
    }
}
```


Recursion

```
int fact(int n)
{
if (n == 1)
    return 1;
else
    return n * fact(n-1);
}
```


Recursion

- In general, but not always, recursive functions replace loops in non-recursive functions.

Recursion

- In general, but not always, recursive functions replace loops in non-recursive functions.

```
int fact(int n)
{
    if (n == 1)
        return 1;
    else
        return n * fact(n-1);
}
```

```
int fact2(int n)
{
    int product = 1;
    while(n > 0)
    {
        product *= n;
        n--;
}
return product;

\section*{Recursion}
- In general, but not always, recursive functions replace loops in non-recursive functions.
- It's also possible to have more than one base or recursive case, if the program might recurse or terminate in different ways, depending on the input being passed in.

\section*{Recursion}
- Multiple base cases: The Fibonacci number sequence is defined as follows:
- The first element is 0 .
- The second element is 1 .
- The \(n^{\text {th }}\) element is the sum of the \((n-1)^{\text {th }}\) and \((n-2)^{\text {th }}\) elements.
- Multiple recursive cases: The Collatz conjecture.

\section*{Recursion}
- The Collatz conjecture is applies to positive integers and speculates that it is always possible to get "back to 1 " if you follow these steps:
- If \(n\) is 1 , stop.
- Otherwise, if \(n\) is even, repeat this process on \(n / 2\).
- Otherwise, if \(n\) is odd, repeat this process on \(3 n+1\).
- Write a recursive function collatz ( n ) that calculates how many steps it takes to get to 1 if you start from n and recurse as indicated above.

\section*{Recursion}
\begin{tabular}{|c|c|c|}
\hline n & collatz(n) & Steps \\
\hline 1 & 0 & 1 \\
\hline 2 & 1 & \(2 \rightarrow 1\) \\
\hline 3 & 7 & \(3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline 4 & 2 & \(4 \rightarrow 2 \rightarrow 1\) \\
\hline 5 & 5 & \(5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline 6 & 8 & \(6 \rightarrow 3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline 7 & 16 & \(7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline 8 & 3 & \(8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline 15 & 17 & \(15 \rightarrow 46 \rightarrow 23 \rightarrow 70 \rightarrow \ldots \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline 27 & 111 & \(27 \rightarrow 82 \rightarrow 41 \rightarrow 124 \rightarrow \ldots \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline 50 & 24 & \(50 \rightarrow 25 \rightarrow 76 \rightarrow 38 \rightarrow \ldots \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1\) \\
\hline
\end{tabular}

\section*{Recursion}
```

int collatz(int n)
{
// base case
if (n == 1)
return 0;
// even numbers
else if ((n % 2) == 0)
return 1 + collatz(n/2);
// odd numbers
else
return 1 + collatz(3*n + 1);
}

```
```

