
Recursion

Recursion

• We might describe an implementation of an algorithm as being
particularly “elegant” if it solves a problem in a way that is
both interesting and easy to visualize.

• The technique of recursion is a very common way to
implement such an “elegant” solution.

• The definition of a recursive function is one that, as part of its
execution, invokes itself.

Recursion

• The factorial function (n!) is defined over all positive integers.

• n! equals all of the positive integers less than or equal to n,
multiplied together.

• Thinking in terms of programming, we’ll define the
mathematical function n! as fact(n).

Recursion

fact(1) = 1

fact(2) = 2 * 1

fact(3) = 3 * 2 * 1

fact(4) = 4 * 3 * 2 * 1

fact(5) = 5 * 4 * 3 * 2 * 1

...

Recursion

fact(1) = 1

fact(2) = 2 * fact(1)

fact(3) = 3 * 2 * 1

fact(4) = 4 * 3 * 2 * 1

fact(5) = 5 * 4 * 3 * 2 * 1

...

Recursion

fact(1) = 1

fact(2) = 2 * fact(1)

fact(3) = 3 * fact(2)

fact(4) = 4 * 3 * 2 * 1

fact(5) = 5 * 4 * 3 * 2 * 1

...

Recursion

fact(1) = 1

fact(2) = 2 * fact(1)

fact(3) = 3 * fact(2)

fact(4) = 4 * fact(3)

fact(5) = 5 * 4 * 3 * 2 * 1

...

Recursion

fact(1) = 1

fact(2) = 2 * fact(1)

fact(3) = 3 * fact(2)

fact(4) = 4 * fact(3)

fact(5) = 5 * fact(4)

...

Recursion

fact(n) = n * fact(n-1)

Recursion

• This forms the basis for a recursive definition of the factorial
function.

• Every recursive function has two cases that could apply, given
any input.
• The base case, which when triggered will terminate the recursive

process.

• The recursive case, which is where the recursion will actually occur.

Recursion

fact(1) = 1

fact(2) = 2 * fact(1)

fact(3) = 3 * fact(2)

fact(4) = 4 * fact(3)

fact(5) = 5 * fact(4)

...

Recursion
int fact(int n)

{

// base case

// recursive case

}

Recursion
int fact(int n)

{

if (n == 1)

{

return 1;

}

// recursive case

}

Recursion

fact(1) = 1

fact(2) = 2 * fact(1)

fact(3) = 3 * fact(2)

fact(4) = 4 * fact(3)

fact(5) = 5 * fact(4)

...

Recursion
int fact(int n)

{

if (n == 1)

{

return 1;

}

// recursive case

}

Recursion
int fact(int n)

{

if (n == 1)

{

return 1;

}

else

{

return n * fact(n-1);

}

}

Recursion
int fact(int n)

{

if (n == 1)

{

return 1;

}

else

{

return n * fact(n-1);

}

}

Recursion
int fact(int n)

{

if (n == 1)

return 1;

else

return n * fact(n-1);

}

Recursion

• In general, but not always, recursive functions replace loops in
non-recursive functions.

Recursion

• In general, but not always, recursive functions replace loops in
non-recursive functions.

int fact(int n)
{

if (n == 1)
return 1;

else
return n * fact(n-1);

}

int fact2(int n)
{

int product = 1;
while(n > 0)
{

product *= n;
n--;

}
return product;

}

Recursion

• In general, but not always, recursive functions replace loops in
non-recursive functions.

• It’s also possible to have more than one base or recursive case,
if the program might recurse or terminate in different ways,
depending on the input being passed in.

Recursion

• Multiple base cases: The Fibonacci number sequence is
defined as follows:
• The first element is 0.

• The second element is 1.

• The nth element is the sum of the (n-1)th and (n-2)th elements.

• Multiple recursive cases: The Collatz conjecture.

Recursion

• The Collatz conjecture is applies to positive integers and
speculates that it is always possible to get “back to 1” if you
follow these steps:
• If n is 1, stop.

• Otherwise, if n is even, repeat this process on n/2.

• Otherwise, if n is odd, repeat this process on 3n + 1.

• Write a recursive function collatz(n) that calculates how
many steps it takes to get to 1 if you start from n and recurse
as indicated above.

Recursion

n collatz(n) Steps

1 0 1

2 1 2 1

3 7 3 10 5 16 8 4 2 1

4 2 4 2 1

5 5 5 16 8 4 2 1

6 8 6 3 10 5 16 8 4 2 1

7 16 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

8 3 8 4 2 1

15 17 15 46 23 70 … 8 4 2 1

27 111 27 82 41 124 … 8 4 2 1

50 24 50 25 76 38 … 8 4 2 1

Recursion
int collatz(int n)

{

// base case

if (n == 1)

return 0;

// even numbers

else if ((n % 2) == 0)

return 1 + collatz(n/2);

// odd numbers

else

return 1 + collatz(3*n + 1);

}

