
Euterpea
LilyPond

CS50 Seminar: Type-ing Music with Haskell and
LilyPond

Connor Harris and Stephen Krewson

November 4, 2015

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Table of contents

1 Euterpea

2 LilyPond

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Acknowledgements

Thank you to Mark Santolucito and Donya Quick. And, of course,
to the person who introduced me (and the larger world) to Haskell,
Paul Hudak. (SK)
Thanks to the entire LilyPond community for creating a wonderful
resource, and especially to Simon Albrecht for answering many of
my questions on the lilypond-user mailing list; and more generally
to everyone who indulged my interests for music and programming.
(CH)

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Prerequisites

Install Haskell Platform

”cabal update” and ”cabal install Euterpea”

Configure a MIDI synthesizer if your machine doesn’t have one

Pick a SoundFont to allow the MIDI synth to realize the array
of sound patches specified in General MIDI standard (cf.
typeface vs. font)

Install LilyPond

Ensure midi2ly Python script will execute by adding {path to
LilyPond}/usr/bin to your system’s PATH. You may need to
add .PY to your PATHEXT as well.

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Resources

The Haskell School of Music textbook can be downloaded at
http://haskell.cs.yale.edu/publications/. This is the
definitive text for Euterpea. I have taken some screenshots from
HSoM and some from ”A History of Haskell: Being Lazy with
Class” (2007). Available at http://haskell.cs.yale.edu/
wp-content/uploads/2011/02/history.pdf.
For a great illustrated tutorial check out Learn You a Haskell for
Great Good! at http://learnyouahaskell.com/introduction.

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

http://haskell.cs.yale.edu/publications/
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/history.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/history.pdf
http://learnyouahaskell.com/introduction

Euterpea
LilyPond

Computer Music

Algorithmic composition

Digital synthesis

Digital sampling

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

FM Synthesis

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Musical Instrument Digital Interface (1983)

Data transfer protocol

Guide for organizing sounds (patch map)

Hardware interface

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

General MIDI

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

MIDI Drum Map

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Composability: the case for Haskell scores

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Composability: the case for Haskell controllers

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Haskell (and Euterpea) Features

An apology: this is just a sketch of some aspects of Haskell and its
suitability for computer music. Check out the code online. Fire up
GHCi and :l[oad] some Haskell files. Use :browse and especially
:t[ype]. If I achieve one thing, I hope it’s showing you how fun
exploring Haskell can be!

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Lazy

Non-strict evaluation strategy or ”call-by-need.” That is, delay
evaluation until a term is required. Permits infinite objects!

Accumulating over (potentially infinite) lists. Associativity
and strictness. What can we get away with NOT computing?
Consider (1 - (2 - (3 - 0))) vs. (((0 - 1) - 2) - 3). Consider (1
+ (2 + (3 + 0))) vs. (((0 + 1) + 2) + 3)

foldr (+/-) 0 [1..3]

foldl (+/-) 0 [1..3]

1 p5 = stepSequence (Ju s t 127) 27 $ take gN $ f o l d r
(:) [] $ [3 , 8 , 2 1] ++ [1 , 6 . .]

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Pure

Strong static typing. Functions are mathematical in the sense that
f :: Int − > Int is guaranteed to not access or change any mutable
variables or perform I/0. (f 3) will ALWAYS return the same value.

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Type Classes

Solved overloading, inspired a type-system ”laboratory”. Think
about the notes as laid out on a keyboard. What operations should
musical values support?

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Currying

A function of two arguments, f x y, can be represented as (f x)
y. That is, a function of one argument that returns a function
of one argument! This allows mapping (f x) over a list of y’s.

Consider the intermediate form [[youSleeping,
youSleeping],[brotherJohn, brotherJohn],[morningBells,
morningBells],[dingDong, dingDong]] (remember that each of
these phrases is itself a list, necessitating two concats)

1 song = concat $ concatMap (r e p l i c a t e 2) [youS l eep ing ,
b rothe rJohn , morn ingBe l l s , dingDong]

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Lambda Expressions

Suppose we have some operation that, unlike replicate, is not
defined in the standard library. Well we can define it anonymously
and then can map it in curried fashion. Here’s a small helper
function defined within drumMachine that uses lambda syntax.
Note that this kind of filter is simply the mapping of a Boolean
function over a list (what does it do, btw?).

1 f n p = (\ x −> x ‘mod ‘ n == p)

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Infix Operators

Math style (vs. prefix)

Can define custom operators! (:+:, :=:, /=:)

quot x xs becomes a ‘quot‘ b

Helpful $ infix operator (low precedence)

1 dingDong = [(c 4 qn :=: e 3 qn) , (f 3 qn :=: g 3 qn) ,
(c 4 hn :=: e 3 hn)]

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Sections

Infix operators are themselves ”first class” functions! Remember
partial application. Consider map (+2) [1,2,3] or even map (2+)
[1,2,3]

1 p8 = stepSequence Nothing 41 $ take gN $ i t e r a t e
(+3) 2

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

List Comprehensions

How does this emulate the classic 16-step sequencer, adding EQ
(well, at least volume) to the particular ‘part‘ being generated?

1 s t epSequence v p xs = addVolume v ’ $ l i n e [i f x ‘ elem ‘
xs then pe r c (toEnum p) qn e l s e qnr | x <− [1 . . gN]]

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Algebraic Types

A data type created by combining other data types either as
combinations (products) or alternations (sums). Note how the
Maybe type is a sum of either (Just a) or (Nothing). We use this
to assign our drum machine optional track-specific volumes (and a
default value).

1 s t epSequence : : Maybe Volume −> I n t −> [I n t] −> Music
(Pi tch , Volume)

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Pattern Matching

Extremely powerful and readable when you can define a base case
and then a typical case. You can use underscore to placehold for
any value.

1 s t epSequence [] = r e s t 0
2 s t epSequence v p xs = addVolume v ’ $ l i n e [i f x ‘ elem ‘

xs then pe r c (toEnum p) qn e l s e qnr | x <− [1 . . gN]]
3 where v ’ = fromMaybe 75 v

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Code Walkthrough: Frere Jacques

There are x phrases, each repeated y times.

How do we implement a round? (many ways to do this!)

Note the GM patch names. Think of the instruments and
volumes as modifications or annotations of the underlying
musical notes.

1 f r e r e J a c q u e s =
2 l e t
3 pa r t1 = in s t r umen t H e l i c o p t e r $ addVolume 127 (l i n e

song)
4 pa r t2 = in s t r umen t Pad3Polysynth $ addVolume 127

(l i n e (r e s t 2 : song))
5 pa r t3 = in s t r umen t Lead1Square $ addVolume 70 (l i n e

(r e s t 4 : song))
6 pa r t4 = in s t r umen t VoiceOohs $ addVolume 127 (l i n e

(r e s t 6 : song))
7 i n (pa r t 1 :=: pa r t 2 :=: pa r t 3 :=: pa r t 4)

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Code Walkthrough: Drum Machine

Big idea. Make a bunch of lists (”parts”). Use a bunch of
techniques to generate values in the range [1..r], where r is some
global value for the number of ”steps” (quarter notes scaled to 4x
time at 120 bpm). Assign each list Aj to a percussion sound. As
we step through r starting at 1, if ri ∈ Aj , then that sample gets
triggered.

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Code Walkthrough: Drum Machine

1 drumMachine : : Music (P i tch , Volume)
2 drumMachine = l e t r = [1 . . gN]
3 f n p = (\ x −> x ‘mod ‘ n == p)
4 p1 = stepSequence (Ju s t 127) 1 $ f i l t e r (f 4 1) r
5 p2 = stepSequence Nothing 7 $ f i l t e r (f 4 3) r
6 p3 = stepSequence (Ju s t 127) 0 [7 , 10 , 14 , 23 , 26 , 30]
7 p4 = stepSequence Nothing 4 $ f i l t e r (f 8 5) r
8 p5 = stepSequence (Ju s t 127) 27 $ take gN $ f o l d r

(:) [] $ [3 , 8 , 2 1] ++ [1 , 6 . .]
9 p6 = stepSequence Nothing 28 $ map (‘mod ‘ gN) $

s c an r (+) 1 [1 . . 5]
10 p7 = stepSequence Nothing 29 $ z ipWith (∗) [. . .]
11 p8 = stepSequence Nothing 41 $ take gN $ i t e r a t e

(+3) 2
12 p9 = stepSequence Nothing 35 $ f i l t e r (not . (f 4

1)) r
13 p10 = stepSequence Nothing 3 [7 , 1 5 , 25 , 28 , 32]
14 i n tempo 4 $ i n s t r umen t Pe r c u s s i o n $ repeatM $ chord

[p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 , p9 , p10]

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Time permitting...

drumMachine deliberately combines a kitchen sink of filtering
and list generation techniques. The goal is not concision or
efficiency but demonstration of Haskell’s expressive power.

folds and scans and higher-order thinking

Musical equivalents for higher-order functions (takeM,
repeatM, etc.)

Infinite musical values! How long will drumMachine run?

1 map ’ f = f o l d r (\ x xs −> f x : x s) []

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

On to LilyPond!

This is all free, open-source software. So we can glue together
some scripts on the command line to generate a score for our song!

1 mid i 2 l y song . mid i
2 l i l y p o n d song−mid i . l y

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

What is LilyPond?

Declarative programming language for music typesetting . . .

. . . and program that compiles the language into beautiful
PDF scores.

Analogy: LilyPond is to Finale, Sibelius, MuseScore, etc. as
LaTeX is to Microsoft Word

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Why use LilyPond?

Computer graphics is hard—don’t write your own typesetting
software.

Finale, Sibelius, etc. have hard-to-read binary file formats,
can’t be used programmatically

Easy integrability with LaTeX

Looks beautiful!

Good skill for life, not just CS50

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Simple examples . . .

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

. . . and fancier ones

(more at lilypond.org/examples)
Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

LilyPond object hierarchy, oversimplified

Notes (and expression marks, text, etc.) are contained in a
Voice context . . .

. . . which can be contained hierarchically in other contexts
(e.g. Staff, PianoStaff, Score) . . .

. . . printed by attached engravers (e.g. Note heads engraver

to Voice, Clef engraver to Staff,
Metronome mark engraver to Score)

Extensively customizable! Modifiable context attributes,
embedded scripting language (Scheme)

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Code sample . . .

1 partOne = \ r e l a t i v e c ’ {\ t ime 3/4 \ tempo ”Moderato”
4=96 e4 g8 f e4 | d2 c4 | c2 . \ bar ” | . ” }

2 partTwo = \ r e l a t i v e c { \ key f \major c4 b c | f i s , g2
| c2 . }

3 f i r s t S t a f f = \new S t a f f { \partOne }
4 s e c o ndS t a f f = \new S t a f f {\ c l e f ba s s \partTwo}
5 \ s c o r e { << \ f i r s t S t a f f \ s e c o ndS t a f f>> }

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

. . . and its output

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

MusicXML

XML spec for encoding music scores

Most programs can write and read MusicXML files

May be easier for your program to write than LilyPond files
(depending on your internal object model and use of
LilyPond’s customization features)

Any language worth its salt has an XML library

Easier for users to modify with program of their choice

Convertible to LilyPond format with musicxml2ly (bundled
with LilyPond package)

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Frescobaldi

Free, open-source cross-platform editing environment for
LilyPond, à la TeXstudio or TeXworks

Split-screen PDF viewer

Autocompletion and syntax highlighting for easier editing

Template constructor for

Free open-source download at frescobaldi.org

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

Euterpea
LilyPond

Other resources

LilyPond manuals (lilypond.org/manuals), including a
tutorial, syntax reference and code samples (“snippets”)

LilyPond internals reference (lilypond.org/internals):
useful for making extensive customizations not covered by the
snippets

MusicXML tutorial (musicxml.com/tutorial): aimed at
programmers who want their programs to output MusicXML
files

Structure and Interpretation of Computer Programs
(mitpress.mit.edu/sicp/): introductory CS book using
Scheme (the LilyPond embedded scripting language); also the
second-greatest CS textbook ever written; you won’t need
more than the first few sections.

Connor Harris and Stephen Krewson CS50 Seminar: Type-ing Music with Haskell and LilyPond

	Euterpea
	LilyPond

