
A Very Quick git Primer

Letting git know who you are:
git config --global user.name “Your Name”
git config --global user.email “your email address”
(Note: these work in or outside any repository and change your user info for every repository on that
computer. In a specific repository, you can change your user info for just that repository by running the
same commands without the --global.)

Cloning a repository:
git clone <clone URL>
(Note: If the repository you're cloning is hosted on GitHub, you can copy-paste the clone URL from
the webpage associated with the repository – generally github.com/<username>/<name of repo>. If
you have SSH keys set up, you can use the SSH clone URL; otherwise, use the HTTPS URL and type in
your GitHub username and password when prompted.)

Committing:
git status
git add <filename>
git commit -m “Informative commit message here”
(Note: before you commit, it's always a good idea to see what files you've changed, whether they're
already being tracked by git or not, and whether you'd previously added anything to the staging
index. If you've only changed files that are already being tracked, you can skip the git add step and
instead use git commit -am “Commit message”.)

Pulling and pushing:
git pull origin <branch name>
git push origin <branch name>
(Note: If you've pulled and pushed from this branch of this repository before, git most likely already
knows where to pull from and push to, so you can just use git push and git pull. If you're familiar
with rebasing, you can also use git pull --rebase. And remember – always pull before you push!)

Dealing with branches:
git checkout -b <new branch name>
git checkout <existing branch name>
git branch
(Note: git branch shows you all your existing local branches and what branch you're currently on. To
switch which branch you're on, use git checkout.)

Merging:
git merge <child branch name>
(Note: You should be on the parent branch when you do this. Generally you're done with the child
branch after you've merged it into the parent branch – since all of its changes are now in the parent
branch – so you can delete the child branch with git branch -d <child branch name>, and work in
a new branch for the next feature.)

Other useful features:
git log
(Shows a list of previous commits with authors, dates, and commit messages.)

git revert <commit hash>
(Undoes a specific commit by creating a new commit that exactly reverses the changes made in that
commit. You can get the commit hash of the commit you want to revert from git log.)

git checkout <commit hash>
(Puts you back at what the code looked like immediately after a specific commit, e.g., to determine
when a particular bug was introduced. If you want to make a new branch starting from this commit,
you can do git checkout -b <new branch name> just as you usually would. To return to where you
were before checking out the commit, just use git checkout <previous branch name>.)

git cherry-pick <commit hash>
(Applies the changes from a specific commit – usually from another branch – to the current branch.)

Advanced features:
git rebase <parent branch name>
(Note: You should be on the child branch when you do this. Incorporates all of parent branch's
changes into child branch as if they happened before new changes in child branch. This modifies
your commit history and thus should be used with extreme caution! Don't rebase in a branch
that's been made public, as this might change history that's already in someone else's local copy.
Note that git pull --rebase is generally safe even when working on a branch that's already public,
because you're pulling by definition from the public history that everyone else has.)

git rebase --interactive HEAD~<number>
(Lets you modify the past <number> commits by hand – this can include changing commit messages,
combining commits, removing commits, and more. This modifies your commit history and thus
should be used with extreme caution! Most common use case: you commit, but before pushing,
realize that you made some dumb error or left out a small change that doesn't really warrant its own
commit. You can make the change, commit it, and then do git rebase --interactive HEAD~2,
where you can choose to “squash” the latter commit into the former. You can then push as if those
changes were always in the same commit. However, if you already pushed the first commit, you're out
of luck and have to just push the small changes as a separate commit – never change public history.)

Note that all of these commands have additional options and other uses, plus there are
many, many more features to explore. You can find more information about the above

features plus many more details at git-scm.com/docs/.

