
Statistical Programming with R

Connor Harris
(connorharris@college.harvard.edu)

CS50, Harvard University

October 27, 2015
If you want to follow along with the demos, download R at cran.r-project.org

or from your Linux package manager

Connor Harris Statistical Programming with R

What is R?

Programming language designed for statistics and data analysis

Imperative, weakly typed, interpreted

Broadly C-like syntax

Extensive library and native facilities for data mining and statistical analysis

Connor Harris Statistical Programming with R

Recommended references (and free legal downloads)

Venables et al.: An Introduction to R

“Official” R beginner’s guide, maintained by core developers
https://cran.r-project.org/doc/manuals/R-intro.pdf

C. R. Shalizi: Advanced Data Analysis from an Elementary Point of View

Statistics textbook with hundreds of R figures and code samples, plus appendix with
useful advice on R programming
http://www.stat.cmu.edu/ cshalizi/ADAfaEPoV/

Connor Harris Statistical Programming with R

General caveats

This discussion only scratches the surface of R’s capabilities.

I have simplified my discussion of many things, especially the capabilities and call
syntax of certain functions. I have presented enough for the most common, simple
use-cases; consult the documentation for the full detail.

Connor Harris Statistical Programming with R

Why use R?

Consider using R for components of your project that involve:

Mining of large data sets

Automated or complicated statistical analysis

Data visualization or graphing

Connor Harris Statistical Programming with R

Type ontology

Atomic types: numeric (64-bit floating point), character (strings), logical
(Boolean); coercion (and scanf() equivalents) with as.numeric et sim.

Vectors, matrices, higher-dimensionalarrays of the above

“Lists” (type of associative array; vectors of lists behave a bit oddly)

No real “pure” atomic types: single values treated as arrays of length 1

No mixed-type arrays; if you try you’ll get implicit string conversions

Connor Harris Statistical Programming with R

Unusual syntactic features

No variable declarations!

Assignment with <-

Comments with #

Modular residues and integer division with %% and %/%

Ranges with colon (2:5 is a vector [2 3 4 5])

One-indexing!

For-loops: for (value in vector) { ... }
Function syntax: foo <- function(args) { ... }
(Forgot to mention this one in the talk: semicolons after statements are optional
at the ends of lines)

Connor Harris Statistical Programming with R

Vectors

Constructed with c(datum1, ..., datumn) (arguments can also be vectors,
though resulting array is flattened)

Cannot be of mixed type

Behave as if padded infinitely with value NA (“missing value”)

Unary functions map over arrays

Binary functions are applied entry by entry (cycling shorter array if necessary)

Access with square brackets containing (one-indexed!) indices. Can pass vector of
indices to get vector of corresponding elements, negative indices to remove
elements (NB: differs from Python)

Summary statistics with summary()

Connor Harris Statistical Programming with R

Matrices

Initialized with matrix(data, nrow=rows, ncol=columns); data (a vector)
fills matrix first up to down, then left to right

Excellent facilities for matrix multiplication (a %*% b), spectral decomposition
(eigen(a)), and other common tasks

Arrays (higher-dimensional matrices) can be initialized with array(dim=c(dim1,

..., dimn))

Access columns with foo[rownum,], columns with foo[,colnum]

Connor Harris Statistical Programming with R

Lists

Type of associative array

Initialized as list(key1=val1, ..., keyn=valn)

Access and set values with foo$key

Access individual key–value pairs with integer indices or as foo["key"]

Reading from a nonexistent key returns NULL, not an error; this can trip you up

Connor Harris Statistical Programming with R

Data frames

Type of list in which every value is a vector of the same length

Used for representing data table

Initialized with data.frame([column-name1=]column-data1, ...,

column-namen=]column-datan, [row.names=string-vector])

Access columns with foo["column-name"] or foo[column-index]

Access rows with foo[row-index,] (note trailing comma)

Row and column names accessible with rownames(foo) and colnames(foo)

Print header and first few rows with head(foo)

Connor Harris Statistical Programming with R

Functions

foo <- function(arg1[=default1], ..., argn[=defaultn]) { ... }
Called as foo([arg1=]value1, ..., [argn=]valuen)

No need for explicit return() statement (note parentheses): last statement
evaluated is return value—but explicit return() is often better style

Keyword arguments in function calls can be included in any order

Connor Harris Statistical Programming with R

Data import and export

Read tabular data into data frames with read.table() (text files), read.xls()
(Excel spreadsheets), read.csv() (CSV files), et sim.

Write data frames out as tables with write.table(), etc.

Save arbitrary R objects to binary files and reload them with save(object1,

..., objectn, file=file) and load(file)

Files are written and read by default into R’s working directory, readable and
modifiable with getwd() and setwd(dir)

Connor Harris Statistical Programming with R

Multilinear regression

Syntax: model <- lm(y ∼ x1[+x2[...[+xn]...]][, dataframe])

y is the dependent variable, x1, ..., xn the independent variables; can be either
vectors or column headers of the data frame specified in the optional second
argument

Possible to specify more complex formulae, e.g. model <- lm(y^2 + 1 ∼
log(x)

Print summaries of the model (with line-of-best-fit parameters, etc.) with
summary

For calculating simple correlations, use cor(vec1, vec2[, method=method])

Connor Harris Statistical Programming with R

Plotting

Workhorse function is plot(x, y, ...), plus many variants and specializations

Takes two vectors of the same length; precede with attach(dataframe) to use
column headers instead of separate vectors

Myriad optional arguments for controlling various details of the plot. Some
common ones: type ("p" for points [i.e. scatter plot], "l" for lines, et sim.);
main (overall title); xlab, ylab (axis labels), col (default color)

Can add fit best-fit lines and local regression curves with
abline(regression-model) and lines(lowess(x, y))

Default graphical output is a pop-up window; write to files (in, e.g., PNG format)
with png(filename); close devices with dev.off()

Facilities for 3D and contour plotting, but I won’t go into these now

Some third-party libraries for making animation, but a better choice is to use R to
generate the frames for animations and then combine them with a third-party
program like FFmpeg or ImageMagick

Connor Harris Statistical Programming with R

Time for a demo

Unix and OS X users: open a terminal window and type “R” at the command
prompt

Windows users: find R in the list of programs in the start menu

Connor Harris Statistical Programming with R

Foreign-function interface I

Allows R code to call C functions

Why would you want to do this?

Higher speed in inner loops

Reuse of existing C libraries

Interface is slightly arcane and existing tutorials are confusing

Following instructions are for Unix-like systems (e.g. Linux, OS X)—I don’t know
about Windows

Please do not write your final project on Windows

Connor Harris Statistical Programming with R

Foreign-function interface II

Must take all arguments as pointers (NB: for arrays, this is a pointer to the first
element)

Floating-point type is double (64-bit)

Must return void; tells result by modifying arguments

void dotprod (double∗ vec1 , double vec2 , i n t ∗ n , double∗ out) {
∗ out = 0 ;
f o r (i n t i = 0 ; i < ∗n ; i ++) {

∗ out += vec1 [i] ∗ vec2 [i] ;
}

}

Connor Harris Statistical Programming with R

Foreign-function interface III

Good practice to write a function in C that takes arguments without pointers and then
a “wrapper function” that handles the FFI requirements:

double dotprod i n t e r n a l (double∗ vec1 , double∗ vec2 , i n t n) {
double r e s u l t = 0 ;
f o r (i n t i = 0 ; i < n ; i ++) {

r e s u l t += vec1 [i] ∗ vec2 [i]
}
return r e s u l t ;

}
void dotprod (double∗ vec1 , double∗ vec2 , i n t ∗ n , double∗ out) {

∗ out = dotprod i n t e r n a l (vec1 , vec2 , ∗n) ;
}

Connor Harris Statistical Programming with R

Foreign-function interface IV

Compile C code with R CMD SHLIB foo.c (in the OS shell, not R)—creates
library foo.so

Use library in R code with dyn.load("foo.so")

Call using .C() function; takes name of C routine and type-coerced arguments
(using as.integer, as.double, as.character, as.logical)

Returns list (associative array) of parameter names and modified values

r e s u l t <− .C(” dotprod ” , as . double (vec1) , as . double (vec2) ,
as . i n teger (length (vec1)) , as . double (0))

p r o d u c t <− r e s u l t $out

Connor Harris Statistical Programming with R

Bad practices: Explicit loops

Slow, inelegant

Unnecessary because of R’s facile vector handling

Replace with higher-order functions (Map, Reduce, Find, Filter) or apply
functions; see Shalizi for other methods

Connor Harris Statistical Programming with R

Bad practices: Appending to vectors

Several equivalent syntaxes, e.g.

vec [length (vec)+1] <− newva lue
vec <− c (vec , newva lue)

Vectors must be completely reallocated when resized

Pre-allocate vectors to the necessary size

vec <− vector (length=1000)

Changing iterated reallocations to preallocation caused a thousandfold speedup
in one of my own projects (numerical differential-equation solver, vectors of length
104 ∼ 105)

Connor Harris Statistical Programming with R

Error handling

R prefers continuing after possible errors to stopping, which can produce
unexpected behavior in hard-to-predict places

Two easy mistakes to make: vector values where single numbers are expected, and
NULL values—cause functions to behave strangely, but don’t throw clean errors

Sanity-check function inputs with stopifnot() (equivalent to C’s assert())

Connor Harris Statistical Programming with R

End

I am happy to take questions by e-mail: connorharris@college.harvard.edu

I am also happy to serve as an unofficial adviser for anyone using R in a final
project; talk to your TF and write me an e-mail if so

Connor Harris Statistical Programming with R

